NO Termination proof of Relative_05_rtL-evo.ari

(0) Obligation:

Relative term rewrite system:
The relative TRS consists of the following R rules:

top(U(x, y)) → top(check(D(x, y)))
D(x, B) → U(x, B)
F(x, U(O(y), z)) → U(x, F(y, z))
F(x, U(N(y), z)) → U(x, F(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))
D(E, F(x, y)) → F(E, D(x, y))

The relative TRS consists of the following S rules:

check(O(x)) → O(x)
check(D(x, y)) → D(check(x), y)
EN(E)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
check(U(x, y)) → U(check(x), y)
check(F(x, y)) → F(check(x), y)
check(N(x)) → N(check(x))
check(D(x, y)) → D(x, check(y))

(1) RelTRStoRelADPProof (EQUIVALENT transformation)

We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].

(2) Obligation:

Relative ADP Problem with
absolute ADPs:

top(U(x, y)) → TOP(check(D(x, y)))
top(U(x, y)) → top(CHECK(D(x, y)))
top(U(x, y)) → top(check(D1(x, y)))
D(x, B) → U(x, B)
F(x, U(O(y), z)) → U(x, F1(y, z))
F(x, U(N(y), z)) → U(x, F1(y, z))
D(O(x), F(y, z)) → F1(x, D(y, z))
D(O(x), F(y, z)) → F(x, D1(y, z))
D(N(x), F(y, z)) → F1(x, D(y, z))
D(N(x), F(y, z)) → F(x, D1(y, z))
F(x, U(E, y)) → U(x, F1(E, y))
F(x, U(E, y)) → U(x, F(E1, y))
D(E, F(x, y)) → F1(E, D(x, y))
D(E, F(x, y)) → F(E1, D(x, y))
D(E, F(x, y)) → F(E, D1(x, y))

and relative ADPs:

check(O(x)) → O(x)
check(D(x, y)) → D1(CHECK(x), y)
EN(E1)
check(F(x, y)) → F1(x, CHECK(y))
check(U(x, y)) → U(x, CHECK(y))
check(O(x)) → O(CHECK(x))
check(U(x, y)) → U(CHECK(x), y)
check(F(x, y)) → F1(CHECK(x), y)
check(N(x)) → N(CHECK(x))
check(D(x, y)) → D1(x, CHECK(y))

(3) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
3 SCCs with nodes from P_abs,
12 Lassos,
Result: This relative DT problem is equivalent to 15 subproblems.

(4) Complex Obligation (AND)

(5) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))
F(x, U(E, y)) → U(x, F1(E, y))
F(x, U(N(y), z)) → U(x, F1(y, z))

and relative ADPs:

check(O(x)) → O(x)
EN(E)
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(6) RelADPDerelatifyingProof (EQUIVALENT transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F1(x, U(O(y), z)) → F1(y, z)
F1(x, U(E, y)) → F1(E, y)
F1(x, U(N(y), z)) → F1(y, z)

The TRS R consists of the following rules:

check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
F(x, U(O(y), z)) → U(x, F(y, z))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(8) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

F1(x, U(O(y), z)) → F1(y, z)

Strictly oriented rules of the TRS R:

F(x, U(O(y), z)) → U(x, F(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Used ordering: Polynomial interpretation [POLO]:

POL(B) = 0   
POL(D(x1, x2)) = x1 + x2   
POL(E) = 1   
POL(F(x1, x2)) = 2 + x1 + x2   
POL(F1(x1, x2)) = x1 + x2   
POL(N(x1)) = x1   
POL(O(x1)) = 1 + x1   
POL(U(x1, x2)) = x1 + x2   
POL(check(x1)) = x1   
POL(top(x1)) = 2·x1   

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F1(x, U(E, y)) → F1(E, y)
F1(x, U(N(y), z)) → F1(y, z)

The TRS R consists of the following rules:

check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(10) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

F1(x, U(E, y)) → F1(E, y)
F1(x, U(N(y), z)) → F1(y, z)


Used ordering: Polynomial interpretation [POLO]:

POL(B) = 1   
POL(D(x1, x2)) = 1 + 2·x1 + x2   
POL(E) = 2   
POL(F(x1, x2)) = 2·x1 + x2   
POL(F1(x1, x2)) = x1 + x2   
POL(N(x1)) = x1   
POL(O(x1)) = 2 + 2·x1   
POL(U(x1, x2)) = 1 + 2·x1 + x2   
POL(check(x1)) = x1   
POL(top(x1)) = x1   

(11) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(12) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(13) YES

(14) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))
D(E, F(x, y)) → F(E, D1(x, y))
D(N(x), F(y, z)) → F(x, D1(y, z))

and relative ADPs:

check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
F(x, U(O(y), z)) → U(x, F(y, z))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(15) RelADPDerelatifyingProof (EQUIVALENT transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

D1(O(x), F(y, z)) → D1(y, z)
D1(E, F(x, y)) → D1(x, y)
D1(N(x), F(y, z)) → D1(y, z)

The TRS R consists of the following rules:

check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
F(x, U(O(y), z)) → U(x, F(y, z))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(17) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

D1(O(x), F(y, z)) → D1(y, z)
D1(E, F(x, y)) → D1(x, y)
D1(N(x), F(y, z)) → D1(y, z)

Strictly oriented rules of the TRS R:

F(x, U(O(y), z)) → U(x, F(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Used ordering: Polynomial interpretation [POLO]:

POL(B) = 0   
POL(D(x1, x2)) = 2 + x1 + x2   
POL(D1(x1, x2)) = x1 + x2   
POL(E) = 0   
POL(F(x1, x2)) = 2 + x1 + x2   
POL(N(x1)) = x1   
POL(O(x1)) = 1 + 2·x1   
POL(U(x1, x2)) = 2 + x1 + x2   
POL(check(x1)) = x1   
POL(top(x1)) = x1   

(18) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(19) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(20) YES

(21) Obligation:

Relative ADP Problem with
absolute ADPs:

top(U(x, y)) → TOP(check(D(x, y)))

and relative ADPs:

check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
F(x, U(O(y), z)) → U(x, F(y, z))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(22) RelADPDerelatifyingProof (EQUIVALENT transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(U(x, y)) → TOP(check(D(x, y)))

The TRS R consists of the following rules:

check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
F(x, U(O(y), z)) → U(x, F(y, z))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(24) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

F(x, U(O(y), z)) → U(x, F(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Used ordering: Polynomial interpretation [POLO]:

POL(B) = 2   
POL(D(x1, x2)) = x1 + 2·x2   
POL(E) = 1   
POL(F(x1, x2)) = x1 + 2·x2   
POL(N(x1)) = x1   
POL(O(x1)) = 1 + 2·x1   
POL(TOP(x1)) = 2·x1   
POL(U(x1, x2)) = x1 + 2·x2   
POL(check(x1)) = x1   
POL(top(x1)) = x1   

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(U(x, y)) → TOP(check(D(x, y)))

The TRS R consists of the following rules:

check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(26) TransformationProof (EQUIVALENT transformation)

By narrowing [LPAR04] the rule TOP(U(x, y)) → TOP(check(D(x, y))) at position [0] we obtained the following new rules [LPAR04]:

TOP(U(x0, x1)) → TOP(D(check(x0), x1)) → TOP(U(x0, x1)) → TOP(D(check(x0), x1))
TOP(U(x0, x1)) → TOP(D(x0, check(x1))) → TOP(U(x0, x1)) → TOP(D(x0, check(x1)))
TOP(U(x0, B)) → TOP(check(U(x0, B))) → TOP(U(x0, B)) → TOP(check(U(x0, B)))
TOP(U(E, F(x0, x1))) → TOP(check(F(E, D(x0, x1)))) → TOP(U(E, F(x0, x1))) → TOP(check(F(E, D(x0, x1))))
TOP(U(N(x0), F(x1, x2))) → TOP(check(F(x0, D(x1, x2)))) → TOP(U(N(x0), F(x1, x2))) → TOP(check(F(x0, D(x1, x2))))

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(U(x0, x1)) → TOP(D(check(x0), x1))
TOP(U(x0, x1)) → TOP(D(x0, check(x1)))
TOP(U(x0, B)) → TOP(check(U(x0, B)))
TOP(U(E, F(x0, x1))) → TOP(check(F(E, D(x0, x1))))
TOP(U(N(x0), F(x1, x2))) → TOP(check(F(x0, D(x1, x2))))

The TRS R consists of the following rules:

check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(28) NonTerminationLoopProof (COMPLETE transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = TOP(D(x, B)) evaluates to t =TOP(D(check(x), B))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [x / check(x)]
  • Semiunifier: [ ]




Rewriting sequence

TOP(D(x, B))TOP(U(x, B))
with rule D(x', B) → U(x', B) at position [0] and matcher [x' / x]

TOP(U(x, B))TOP(D(check(x), B))
with rule TOP(U(x0, x1)) → TOP(D(check(x0), x1))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(29) NO

(30) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(E, y)) → U(x, F(E1, y))

and relative ADPs:

check(O(x)) → O(x)
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
check(O(x)) → O(CHECK(x))
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

(31) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F(E1, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(F(x, y)) → F1(x, CHECK(y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D1(x, CHECK(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:

Ordered with Polynomial interpretation [POLO]:

POL(B) = 3   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 2·x1 + 2·x2   
POL(E) = 1   
POL(E1) = 0   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + 3·x2   
POL(N(x1)) = x1   
POL(O(x1)) = 3·x1   
POL(TOP(x1)) = 2   
POL(U(x1, x2)) = x1 + x2   
POL(check(x1)) = x1   
POL(top(x1)) = 0   

(32) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

check(O(x)) → O(x)
EN(E)
check(O(x)) → O(CHECK(x))
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(F(x, y)) → F(x, check(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(33) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(34) YES

(35) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F1(x, D(y, z))

and relative ADPs:

check(O(x)) → O(x)
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
check(O(x)) → O(CHECK(x))
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

(36) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F1(x, D(y, z))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(F(x, y)) → F1(x, CHECK(y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D1(x, CHECK(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:

Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 3·x1   
POL(D(x1, x2)) = 3 + 2·x1 + 3·x2   
POL(D1(x1, x2)) = 2 + 3·x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(F1(x1, x2)) = 1 + x2   
POL(N(x1)) = x1   
POL(O(x1)) = 2·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 2·x1 + x2   
POL(check(x1)) = 2·x1   
POL(top(x1)) = 0   

(37) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

check(O(x)) → O(x)
EN(E)
check(O(x)) → O(CHECK(x))
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(F(x, y)) → F(x, check(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
D(O(x), F(y, z)) → F(x, D(y, z))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))

(38) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(39) YES

(40) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(E, y)) → U(x, F1(E, y))

and relative ADPs:

check(O(x)) → O(x)
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
check(O(x)) → O(CHECK(x))
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

(41) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


F(x, U(E, y)) → U(x, F1(E, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O(x)
EN(E)
check(O(x)) → O(CHECK(x))
check(U(x, y)) → U(CHECK(x), y)
F(x, U(N(y), z)) → U(x, F(y, z))
check(F(x, y)) → F1(x, CHECK(y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:

Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(D1(x1, x2)) = 2·x1 + 2·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(F1(x1, x2)) = 3·x1 + 2·x2   
POL(N(x1)) = x1   
POL(O(x1)) = 3 + 3·x1   
POL(TOP(x1)) = 2 + 2·x1   
POL(U(x1, x2)) = 2 + 3·x1 + x2   
POL(check(x1)) = x1   
POL(top(x1)) = 0   

(42) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(N(x)) → N(CHECK(x))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

(43) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(44) YES

(45) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F(x, D1(y, z))

and relative ADPs:

check(O(x)) → O(x)
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
check(O(x)) → O(CHECK(x))
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

(46) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F(x, D1(y, z))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(F(x, y)) → F1(x, CHECK(y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D1(x, CHECK(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:

Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 2·x1 + 3·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + 2·x2   
POL(N(x1)) = x1   
POL(O(x1)) = 3·x1   
POL(TOP(x1)) = 2   
POL(U(x1, x2)) = 3·x1 + x2   
POL(check(x1)) = x1   
POL(top(x1)) = 0   

(47) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

check(O(x)) → O(x)
EN(E)
check(O(x)) → O(CHECK(x))
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(F(x, y)) → F(x, check(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))

(48) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(49) YES

(50) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F1(y, z))

and relative ADPs:

check(O(x)) → O(x)
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
check(O(x)) → O(CHECK(x))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

(51) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O(x)
EN(E)
check(F(x, y)) → F1(x, CHECK(y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D1(x, CHECK(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(N(y), z)) → U(x, F1(y, z))

Relative ADPs:

check(U(x, y)) → U(x, CHECK(y))
check(O(x)) → O(CHECK(x))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(D1(x1, x2)) = 2·x1   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 2·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = 3·x1   
POL(O(x1)) = 3·x1   
POL(TOP(x1)) = 2 + 2·x1 + x12   
POL(U(x1, x2)) = x1 + x2   
POL(check(x1)) = x1   
POL(top(x1)) = 0   

(52) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F1(y, z))

and relative ADPs:

check(O(x)) → O(x)
EN(E)
check(O(x)) → O(CHECK(x))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(F(x, y)) → F(x, check(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
D(O(x), F(y, z)) → F(x, D(y, z))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))

(53) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(54) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(N(y), z)) → U(x, F1(y, z))

and relative ADPs:

check(O(x)) → O(x)
EN(E)
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
D(O(x), F(y, z)) → F(x, D(y, z))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))

(55) RelADPDerelatifyingProof (EQUIVALENT transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F1(x, U(N(y), z)) → F1(y, z)

The TRS R consists of the following rules:

check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
F(x, U(O(y), z)) → U(x, F(y, z))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(57) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

F(x, U(O(y), z)) → U(x, F(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Used ordering: Polynomial interpretation [POLO]:

POL(B) = 2   
POL(D(x1, x2)) = 2·x1 + 2·x2   
POL(E) = 2   
POL(F(x1, x2)) = 2·x1 + 2·x2   
POL(F1(x1, x2)) = x1 + x2   
POL(N(x1)) = x1   
POL(O(x1)) = 2 + 2·x1   
POL(U(x1, x2)) = 2·x1 + 2·x2   
POL(check(x1)) = x1   
POL(top(x1)) = x1   

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F1(x, U(N(y), z)) → F1(y, z)

The TRS R consists of the following rules:

check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(59) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

F1(x, U(N(y), z)) → F1(y, z)


Used ordering: Polynomial interpretation [POLO]:

POL(B) = 1   
POL(D(x1, x2)) = 1 + 2·x1 + x2   
POL(E) = 2   
POL(F(x1, x2)) = 1 + 2·x1 + x2   
POL(F1(x1, x2)) = x1 + 2·x2   
POL(N(x1)) = x1   
POL(O(x1)) = 1 + x1   
POL(U(x1, x2)) = 1 + 2·x1 + x2   
POL(check(x1)) = x1   
POL(top(x1)) = x1   

(60) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(61) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(62) YES

(63) Obligation:

Relative ADP Problem with
absolute ADPs:

D(N(x), F(y, z)) → F(x, D1(y, z))

and relative ADPs:

check(O(x)) → O(x)
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
check(O(x)) → O(CHECK(x))
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

(64) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(N(x), F(y, z)) → F(x, D1(y, z))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(F(x, y)) → F1(x, CHECK(y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D1(x, CHECK(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:

Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 2·x1 + 3·x2   
POL(E) = 3   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + 2·x2   
POL(N(x1)) = x1   
POL(O(x1)) = 3·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = 3·x1 + x2   
POL(check(x1)) = x1   
POL(top(x1)) = 0   

(65) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

check(O(x)) → O(x)
EN(E)
check(O(x)) → O(CHECK(x))
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(F(x, y)) → F(x, check(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
D(O(x), F(y, z)) → F(x, D(y, z))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))

(66) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(67) YES

(68) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F1(E, D(x, y))

and relative ADPs:

check(O(x)) → O(x)
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
check(O(x)) → O(CHECK(x))
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

(69) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O(x)
EN(E)
check(U(x, y)) → U(CHECK(x), y)
F(x, U(N(y), z)) → U(x, F(y, z))
check(F(x, y)) → F1(x, CHECK(y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(E, F(x, y)) → F1(E, D(x, y))

Relative ADPs:

check(O(x)) → O(CHECK(x))
check(N(x)) → N(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3·x1 + 2·x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 3·x1 + 2·x2   
POL(N(x1)) = x1   
POL(O(x1)) = 3·x1   
POL(TOP(x1)) = x1   
POL(U(x1, x2)) = 3 + 2·x1 + 2·x2   
POL(check(x1)) = x1   
POL(top(x1)) = 0   

(70) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F1(E, D(x, y))

and relative ADPs:

check(O(x)) → O(x)
EN(E)
check(O(x)) → O(CHECK(x))
F(x, U(N(y), z)) → U(x, F(y, z))
check(N(x)) → N(CHECK(x))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
D(O(x), F(y, z)) → F(x, D(y, z))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))

(71) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(72) TRUE

(73) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E, D1(x, y))

and relative ADPs:

check(O(x)) → O(x)
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
check(O(x)) → O(CHECK(x))
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

(74) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E, D1(x, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(F(x, y)) → F1(x, CHECK(y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D1(x, CHECK(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:

Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 2·x1 + 3·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + 2·x2   
POL(N(x1)) = 3·x1   
POL(O(x1)) = 3·x1   
POL(TOP(x1)) = 0   
POL(U(x1, x2)) = x1 + x2   
POL(check(x1)) = x1   
POL(top(x1)) = 0   

(75) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

check(O(x)) → O(x)
EN(E)
check(O(x)) → O(CHECK(x))
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(F(x, y)) → F(x, check(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
D(O(x), F(y, z)) → F(x, D(y, z))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))

(76) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(77) YES

(78) Obligation:

Relative ADP Problem with
absolute ADPs:

D(O(x), F(y, z)) → F1(x, D(y, z))

and relative ADPs:

check(O(x)) → O(x)
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
check(O(x)) → O(CHECK(x))
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

(79) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(O(x), F(y, z)) → F1(x, D(y, z))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(F(x, y)) → F1(x, CHECK(y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D1(x, CHECK(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:

Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 2·x1 + 3·x2   
POL(E) = 1   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 2·x1 + 2·x2   
POL(N(x1)) = x1   
POL(O(x1)) = 3·x1   
POL(TOP(x1)) = 2   
POL(U(x1, x2)) = 2·x1 + x2   
POL(check(x1)) = x1   
POL(top(x1)) = 0   

(80) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

check(O(x)) → O(x)
EN(E)
check(O(x)) → O(CHECK(x))
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(F(x, y)) → F(x, check(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))

(81) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(82) YES

(83) Obligation:

Relative ADP Problem with
absolute ADPs:

D(E, F(x, y)) → F(E1, D(x, y))

and relative ADPs:

check(O(x)) → O(x)
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
check(O(x)) → O(CHECK(x))
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

(84) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


D(E, F(x, y)) → F(E1, D(x, y))

Relative ADPs:

check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(F(x, y)) → F1(x, CHECK(y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D1(x, CHECK(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:

Ordered with Polynomial interpretation [POLO]:

POL(B) = 0   
POL(CHECK(x1)) = 2 + 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 3·x1 + x2   
POL(E) = 0   
POL(E1) = 0   
POL(F(x1, x2)) = 3 + 3·x1 + x2   
POL(F1(x1, x2)) = 2·x1   
POL(N(x1)) = 3·x1   
POL(O(x1)) = 3·x1   
POL(TOP(x1)) = x1 + x12   
POL(U(x1, x2)) = 3·x1 + x2   
POL(check(x1)) = x1   
POL(top(x1)) = 0   

(85) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

check(O(x)) → O(x)
EN(E)
check(O(x)) → O(CHECK(x))
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))
D(E, F(x, y)) → F(E, D(x, y))
D(x, B) → U(x, B)
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(F(x, y)) → F(x, check(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
D(O(x), F(y, z)) → F(x, D(y, z))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))

(86) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(87) YES

(88) Obligation:

Relative ADP Problem with
absolute ADPs:

D(x, B) → U(x, B)

and relative ADPs:

check(O(x)) → O(x)
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
check(O(x)) → O(CHECK(x))
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

(89) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(F(x, y)) → F1(x, CHECK(y))
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D1(x, CHECK(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

D(x, B) → U(x, B)

Relative ADPs:

check(U(x, y)) → U(x, CHECK(y))
check(O(x)) → O(CHECK(x))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 1   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = x1   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 1 + x2   
POL(N(x1)) = x1   
POL(O(x1)) = x1   
POL(TOP(x1)) = 2 + 2·x1   
POL(U(x1, x2)) = x1 + x2   
POL(check(x1)) = 3 + 3·x1   
POL(top(x1)) = 0   

(90) Obligation:

Relative ADP Problem with
absolute ADPs:

D(x, B) → U(x, B)

and relative ADPs:

check(O(x)) → O(x)
EN(E)
check(O(x)) → O(CHECK(x))
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(F(x, y)) → F(x, check(y))
F(x, U(O(y), z)) → U(x, F(y, z))
D(N(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
D(O(x), F(y, z)) → F(x, D(y, z))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))

(91) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(92) TRUE

(93) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))

and relative ADPs:

check(O(x)) → O(x)
check(D(x, y)) → D1(CHECK(x), y)
EN(E)
check(O(x)) → O(CHECK(x))
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(F(x, y)) → F1(x, CHECK(y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(D(x, y)) → D1(x, CHECK(y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))

(94) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


check(D(x, y)) → D1(CHECK(x), y)
check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(F(x, y)) → F1(x, CHECK(y))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(F(x, y)) → F1(CHECK(x), y)
check(D(x, y)) → D1(x, CHECK(y))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
F(x, U(E, y)) → U(x, F(E, y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))

Relative ADPs:

check(U(x, y)) → U(x, CHECK(y))
check(O(x)) → O(CHECK(x))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))


Ordered with Polynomial interpretation [POLO]:

POL(B) = 2   
POL(CHECK(x1)) = 2·x1   
POL(D(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(D1(x1, x2)) = 2·x1 + 2·x2   
POL(E) = 0   
POL(E1) = 3   
POL(F(x1, x2)) = 3 + 3·x1 + 3·x2   
POL(F1(x1, x2)) = 0   
POL(N(x1)) = x1   
POL(O(x1)) = 3·x1   
POL(TOP(x1)) = 2 + 2·x12   
POL(U(x1, x2)) = x1 + x2   
POL(check(x1)) = x1   
POL(top(x1)) = 0   

(95) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))

and relative ADPs:

check(O(x)) → O(x)
EN(E)
check(O(x)) → O(CHECK(x))
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(CHECK(x), y)
check(N(x)) → N(CHECK(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(U(x, y)) → U(x, CHECK(y))
check(F(x, y)) → F(x, check(y))
D(N(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
D(O(x), F(y, z)) → F(x, D(y, z))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))

(96) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 1 subproblem.

(97) Obligation:

Relative ADP Problem with
absolute ADPs:

F(x, U(O(y), z)) → U(x, F1(y, z))

and relative ADPs:

check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(check(x), y)
check(N(x)) → N(check(x))
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
D(O(x), F(y, z)) → F(x, D(y, z))
check(D(x, y)) → D(x, check(y))
F(x, U(E, y)) → U(x, F(E, y))

(98) RelADPDerelatifyingProof (EQUIVALENT transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

(99) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F1(x, U(O(y), z)) → F1(y, z)

The TRS R consists of the following rules:

check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
F(x, U(O(y), z)) → U(x, F(y, z))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(100) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

F1(x, U(O(y), z)) → F1(y, z)

Strictly oriented rules of the TRS R:

F(x, U(O(y), z)) → U(x, F(y, z))
D(O(x), F(y, z)) → F(x, D(y, z))

Used ordering: Polynomial interpretation [POLO]:

POL(B) = 2   
POL(D(x1, x2)) = 2·x1 + 2·x2   
POL(E) = 0   
POL(F(x1, x2)) = 2·x1 + 2·x2   
POL(F1(x1, x2)) = x1 + x2   
POL(N(x1)) = x1   
POL(O(x1)) = 2 + x1   
POL(U(x1, x2)) = 2·x1 + 2·x2   
POL(check(x1)) = x1   
POL(top(x1)) = x1   

(101) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

check(O(x)) → O(x)
EN(E)
F(x, U(N(y), z)) → U(x, F(y, z))
check(U(x, y)) → U(check(x), y)
D(x, B) → U(x, B)
D(E, F(x, y)) → F(E, D(x, y))
check(N(x)) → N(check(x))
top(U(x, y)) → top(check(D(x, y)))
check(D(x, y)) → D(check(x), y)
check(F(x, y)) → F(x, check(y))
check(U(x, y)) → U(x, check(y))
check(O(x)) → O(check(x))
D(N(x), F(y, z)) → F(x, D(y, z))
check(F(x, y)) → F(check(x), y)
F(x, U(E, y)) → U(x, F(E, y))
check(D(x, y)) → D(x, check(y))

Q is empty.
We have to consider all (P,Q,R)-chains.

(102) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(103) YES