YES
0 RelTRS
↳1 RelTRStoRelADPProof (⇔, 0 ms)
↳2 RelADPP
↳3 RelADPDepGraphProof (⇔, 0 ms)
↳4 AND
↳5 RelADPP
↳6 RelADPRuleRemovalProof (⇔, 8 ms)
↳7 RelADPP
↳8 RelADPRuleRemovalProof (⇔, 2 ms)
↳9 RelADPP
↳10 DAbsisEmptyProof (⇔, 0 ms)
↳11 YES
↳12 RelADPP
↳13 RelADPRuleRemovalProof (⇔, 0 ms)
↳14 RelADPP
↳15 DAbsisEmptyProof (⇔, 0 ms)
↳16 YES
↳17 RelADPP
↳18 RelADPRuleRemovalProof (⇔, 11 ms)
↳19 RelADPP
↳20 DAbsisEmptyProof (⇔, 0 ms)
↳21 YES
↳22 RelADPP
↳23 RelADPRuleRemovalProof (⇔, 0 ms)
↳24 RelADPP
↳25 DAbsisEmptyProof (⇔, 0 ms)
↳26 YES
↳27 RelADPP
↳28 RelADPReductionPairProof (⇔, 45 ms)
↳29 RelADPP
↳30 RelADPRuleRemovalProof (⇔, 0 ms)
↳31 RelADPP
↳32 DAbsisEmptyProof (⇔, 0 ms)
↳33 YES
↳34 RelADPP
↳35 RelADPReductionPairProof (⇔, 61 ms)
↳36 RelADPP
↳37 RelADPReductionPairProof (⇔, 0 ms)
↳38 RelADPP
↳39 DAbsisEmptyProof (⇔, 0 ms)
↳40 YES
↳41 RelADPP
↳42 RelADPReductionPairProof (⇔, 54 ms)
↳43 RelADPP
↳44 RelADPRuleRemovalProof (⇔, 0 ms)
↳45 RelADPP
↳46 DAbsisEmptyProof (⇔, 0 ms)
↳47 YES
↳48 RelADPP
↳49 RelADPReductionPairProof (⇔, 73 ms)
↳50 RelADPP
↳51 RelADPReductionPairProof (⇔, 3 ms)
↳52 RelADPP
↳53 RelADPCleverAfsProof (⇒, 0 ms)
↳54 QDP
↳55 MRRProof (⇔, 0 ms)
↳56 QDP
↳57 MRRProof (⇔, 0 ms)
↳58 QDP
↳59 PisEmptyProof (⇔, 0 ms)
↳60 YES
↳61 RelADPP
↳62 RelADPReductionPairProof (⇔, 42 ms)
↳63 RelADPP
↳64 RelADPReductionPairProof (⇔, 9 ms)
↳65 RelADPP
↳66 RelADPCleverAfsProof (⇒, 7 ms)
↳67 QDP
↳68 MRRProof (⇔, 0 ms)
↳69 QDP
↳70 MRRProof (⇔, 0 ms)
↳71 QDP
↳72 PisEmptyProof (⇔, 0 ms)
↳73 YES
↳74 RelADPP
↳75 RelADPReductionPairProof (⇔, 54 ms)
↳76 RelADPP
↳77 RelADPReductionPairProof (⇔, 12 ms)
↳78 RelADPP
↳79 RelADPCleverAfsProof (⇒, 7 ms)
↳80 QDP
↳81 MRRProof (⇔, 0 ms)
↳82 QDP
↳83 MRRProof (⇔, 0 ms)
↳84 QDP
↳85 PisEmptyProof (⇔, 0 ms)
↳86 YES
↳87 RelADPP
↳88 RelADPReductionPairProof (⇔, 56 ms)
↳89 RelADPP
↳90 RelADPRuleRemovalProof (⇔, 7 ms)
↳91 RelADPP
↳92 DAbsisEmptyProof (⇔, 0 ms)
↳93 YES
↳94 RelADPP
↳95 RelADPReductionPairProof (⇔, 45 ms)
↳96 RelADPP
↳97 RelADPRuleRemovalProof (⇔, 6 ms)
↳98 RelADPP
↳99 DAbsisEmptyProof (⇔, 0 ms)
↳100 YES
↳101 RelADPP
↳102 RelADPReductionPairProof (⇔, 56 ms)
↳103 RelADPP
↳104 RelADPRuleRemovalProof (⇔, 0 ms)
↳105 RelADPP
↳106 DAbsisEmptyProof (⇔, 0 ms)
↳107 YES
↳108 RelADPP
↳109 RelADPReductionPairProof (⇔, 53 ms)
↳110 RelADPP
↳111 RelADPRuleRemovalProof (⇔, 4 ms)
↳112 RelADPP
↳113 DAbsisEmptyProof (⇔, 0 ms)
↳114 YES
↳115 RelADPP
↳116 RelADPReductionPairProof (⇔, 49 ms)
↳117 RelADPP
↳118 RelADPReductionPairProof (⇔, 12 ms)
↳119 RelADPP
↳120 RelADPDepGraphProof (⇔, 0 ms)
↳121 TRUE
↳122 RelADPP
↳123 RelADPReductionPairProof (⇔, 40 ms)
↳124 RelADPP
↳125 RelADPRuleRemovalProof (⇔, 3 ms)
↳126 RelADPP
↳127 DAbsisEmptyProof (⇔, 0 ms)
↳128 YES
↳129 RelADPP
↳130 RelADPReductionPairProof (⇔, 45 ms)
↳131 RelADPP
↳132 RelADPCleverAfsProof (⇒, 5 ms)
↳133 QDP
↳134 MRRProof (⇔, 15 ms)
↳135 QDP
↳136 MRRProof (⇔, 0 ms)
↳137 QDP
↳138 PisEmptyProof (⇔, 0 ms)
↳139 YES
↳140 RelADPP
↳141 RelADPReductionPairProof (⇔, 48 ms)
↳142 RelADPP
↳143 RelADPDepGraphProof (⇔, 0 ms)
↳144 TRUE
↳145 RelADPP
↳146 RelADPReductionPairProof (⇔, 58 ms)
↳147 RelADPP
↳148 RelADPRuleRemovalProof (⇔, 0 ms)
↳149 RelADPP
↳150 DAbsisEmptyProof (⇔, 0 ms)
↳151 YES
↳152 RelADPP
↳153 RelADPReductionPairProof (⇔, 51 ms)
↳154 RelADPP
↳155 RelADPReductionPairProof (⇔, 0 ms)
↳156 RelADPP
↳157 DAbsisEmptyProof (⇔, 0 ms)
↳158 YES
↳159 RelADPP
↳160 RelADPReductionPairProof (⇔, 38 ms)
↳161 RelADPP
↳162 RelADPRuleRemovalProof (⇔, 6 ms)
↳163 RelADPP
↳164 DAbsisEmptyProof (⇔, 0 ms)
↳165 YES
↳166 RelADPP
↳167 RelADPReductionPairProof (⇔, 51 ms)
↳168 RelADPP
↳169 RelADPRuleRemovalProof (⇔, 0 ms)
↳170 RelADPP
↳171 DAbsisEmptyProof (⇔, 0 ms)
↳172 YES
↳173 RelADPP
↳174 RelADPReductionPairProof (⇔, 37 ms)
↳175 RelADPP
↳176 RelADPReductionPairProof (⇔, 6 ms)
↳177 RelADPP
↳178 DAbsisEmptyProof (⇔, 0 ms)
↳179 YES
↳180 RelADPP
↳181 RelADPReductionPairProof (⇔, 56 ms)
↳182 RelADPP
↳183 RelADPRuleRemovalProof (⇔, 6 ms)
↳184 RelADPP
↳185 DAbsisEmptyProof (⇔, 0 ms)
↳186 YES
↳187 RelADPP
↳188 RelADPReductionPairProof (⇔, 48 ms)
↳189 RelADPP
↳190 RelADPRuleRemovalProof (⇔, 0 ms)
↳191 RelADPP
↳192 DAbsisEmptyProof (⇔, 0 ms)
↳193 YES
↳194 RelADPP
↳195 RelADPReductionPairProof (⇔, 33 ms)
↳196 RelADPP
↳197 RelADPRuleRemovalProof (⇔, 0 ms)
↳198 RelADPP
↳199 DAbsisEmptyProof (⇔, 0 ms)
↳200 YES
↳201 RelADPP
↳202 RelADPReductionPairProof (⇔, 31 ms)
↳203 RelADPP
↳204 RelADPReductionPairProof (⇔, 8 ms)
↳205 RelADPP
↳206 DAbsisEmptyProof (⇔, 0 ms)
↳207 YES
↳208 RelADPP
↳209 RelADPReductionPairProof (⇔, 41 ms)
↳210 RelADPP
↳211 RelADPReductionPairProof (⇔, 11 ms)
↳212 RelADPP
↳213 RelADPCleverAfsProof (⇒, 5 ms)
↳214 QDP
↳215 MRRProof (⇔, 0 ms)
↳216 QDP
↳217 MRRProof (⇔, 0 ms)
↳218 QDP
↳219 PisEmptyProof (⇔, 0 ms)
↳220 YES
↳221 RelADPP
↳222 RelADPReductionPairProof (⇔, 38 ms)
↳223 RelADPP
↳224 RelADPRuleRemovalProof (⇔, 0 ms)
↳225 RelADPP
↳226 DAbsisEmptyProof (⇔, 0 ms)
↳227 YES
↳228 RelADPP
↳229 RelADPReductionPairProof (⇔, 45 ms)
↳230 RelADPP
↳231 RelADPRuleRemovalProof (⇔, 0 ms)
↳232 RelADPP
↳233 DAbsisEmptyProof (⇔, 0 ms)
↳234 YES
↳235 RelADPP
↳236 RelADPReductionPairProof (⇔, 75 ms)
↳237 RelADPP
↳238 RelADPRuleRemovalProof (⇔, 0 ms)
↳239 RelADPP
↳240 DAbsisEmptyProof (⇔, 0 ms)
↳241 YES
↳242 RelADPP
↳243 RelADPReductionPairProof (⇔, 45 ms)
↳244 RelADPP
↳245 RelADPRuleRemovalProof (⇔, 11 ms)
↳246 RelADPP
↳247 DAbsisEmptyProof (⇔, 0 ms)
↳248 YES
↳249 RelADPP
↳250 RelADPReductionPairProof (⇔, 72 ms)
↳251 RelADPP
↳252 RelADPReductionPairProof (⇔, 8 ms)
↳253 RelADPP
↳254 DAbsisEmptyProof (⇔, 0 ms)
↳255 YES
↳256 RelADPP
↳257 RelADPReductionPairProof (⇔, 43 ms)
↳258 RelADPP
↳259 RelADPRuleRemovalProof (⇔, 8 ms)
↳260 RelADPP
↳261 DAbsisEmptyProof (⇔, 0 ms)
↳262 YES
↳263 RelADPP
↳264 RelADPReductionPairProof (⇔, 34 ms)
↳265 RelADPP
↳266 RelADPRuleRemovalProof (⇔, 0 ms)
↳267 RelADPP
↳268 DAbsisEmptyProof (⇔, 0 ms)
↳269 YES
↳270 RelADPP
↳271 RelADPReductionPairProof (⇔, 61 ms)
↳272 RelADPP
↳273 RelADPRuleRemovalProof (⇔, 0 ms)
↳274 RelADPP
↳275 DAbsisEmptyProof (⇔, 0 ms)
↳276 YES
s(a(x)) → s(b(x))
b(b(x)) → a(x)
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
s(a(x)) → S(b(x))
s(a(x)) → s(B(x))
b(b(x)) → A(x)
f(s(x), y) → F(x, S(y))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
35 Lassos,
Result: This relative DT problem is equivalent to 36 subproblems.
s(a(x)) → s(B(x))
b(b(x)) → A(x)
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
s(a(x)) → s(B(x))
s(a(x)) → S(b(x))
b(b(x)) → A(x)
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 2 + x1
POL(b(x1)) = 1 + x1
POL(f(x1, x2)) = 2·x1 + 2·x2
POL(s(x1)) = 3 + x1
b(b(x)) → A(x)
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
b(b(x)) → A(x)
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 1 + x1
POL(b(x1)) = 3 + x1
POL(f(x1, x2)) = 2·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
b(b(x)) → a(x)
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
s(a(x)) → s(B(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(b(x)) → a(x)
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 3 + x1
POL(b(x1)) = 2 + x1
POL(f(x1, x2)) = 3·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
b(b(x)) → A(x)
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
b(b(x)) → A(x)
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 3 + x1
POL(b(x1)) = 2 + x1
POL(f(x1, x2)) = 3·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
b(b(x)) → a(x)
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
s(a(x)) → S(b(x))
s(a(x)) → s(b(x))
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 2 + x1
POL(b(x1)) = 1 + x1
POL(f(x1, x2)) = 2·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
b(b(x)) → a(x)
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = x1
POL(s(x1)) = 3 + 2·x1
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
s(a(x)) → s(B(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(b(x)) → a(x)
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 3 + x1
POL(b(x1)) = 2 + x1
POL(f(x1, x2)) = 3·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
s(a(x)) → s(B(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → s(B(x))
s(b(x)) → B(S(x))
POL(A(x1)) = 2 + x1 + 2·x12
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = 0
POL(s(x1)) = 3 + 2·x1
s(a(x)) → s(B(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
s(a(x)) → s(B(x))
s(b(x)) → B(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
POL(A(x1)) = 2 + x12
POL(B(x1)) = 1 + x1
POL(F(x1, x2)) = 2·x2
POL(S(x1)) = 2 + 2·x1
POL(a(x1)) = 3 + 2·x1
POL(b(x1)) = 3 + 2·x1
POL(f(x1, x2)) = 0
POL(s(x1)) = 3 + 2·x1
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = 0
POL(s(x1)) = 3 + 2·x1
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
b(b(x)) → a(x)
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
s(a(x)) → s(B(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(b(x)) → a(x)
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 3 + x1
POL(b(x1)) = 2 + x1
POL(f(x1, x2)) = 3·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = 2·x1
POL(s(x1)) = 3 + 2·x1
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
s(a(x)) → S(b(x))
POL(A(x1)) = 1 + x1
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x2
POL(S(x1)) = 2 + 2·x1
POL(a(x1)) = 3 + 2·x1
POL(b(x1)) = 3 + 2·x1
POL(f(x1, x2)) = 0
POL(s(x1)) = 3 + 2·x1
s(a(x)) → S(b(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
a_1 =
b_1 =
S_1 =
f_2 = 0, 1
Found this filtering by looking at the following order that orders at least one DP strictly:Polynomial interpretation [POLO]:
POL(S(x1)) = x1
POL(a(x1)) = 2 + 2·x1
POL(b(x1)) = 1 + 2·x1
POL(f(x1, x2)) = 0
POL(s(x1)) = x1
S0(a0(x)) → S0(b0(x))
s0(a0(x)) → s0(b0(x))
f → f
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))
b0(b0(x)) → a0(x)
b0(b0(x)) → a0(x)
POL(S0(x1)) = x1
POL(a0(x1)) = 2 + 2·x1
POL(b0(x1)) = 2 + 2·x1
POL(f) = 0
POL(s0(x1)) = 2 + 2·x1
S0(a0(x)) → S0(b0(x))
s0(a0(x)) → s0(b0(x))
f → f
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))
S0(a0(x)) → S0(b0(x))
s0(a0(x)) → s0(b0(x))
POL(S0(x1)) = x1
POL(a0(x1)) = 1 + 2·x1
POL(b0(x1)) = x1
POL(f) = 0
POL(s0(x1)) = 1 + 2·x1
f → f
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))
s(a(x)) → S(b(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → S(b(x))
s(b(x)) → B(S(x))
POL(A(x1)) = 2
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = x1
POL(s(x1)) = 3 + 2·x1
s(a(x)) → S(b(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(b(x)) → B(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
s(a(x)) → S(b(x))
POL(A(x1)) = 2
POL(B(x1)) = 1 + x1
POL(F(x1, x2)) = 2 + 2·x2
POL(S(x1)) = 2 + 2·x1
POL(a(x1)) = 3 + 2·x1
POL(b(x1)) = 3 + 2·x1
POL(f(x1, x2)) = 0
POL(s(x1)) = 3 + 2·x1
s(a(x)) → S(b(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
a_1 =
b_1 =
S_1 =
f_2 = 0, 1
Found this filtering by looking at the following order that orders at least one DP strictly:Polynomial interpretation [POLO]:
POL(S(x1)) = x1
POL(a(x1)) = 2 + 2·x1
POL(b(x1)) = 1 + 2·x1
POL(f(x1, x2)) = 0
POL(s(x1)) = x1
S0(a0(x)) → S0(b0(x))
s0(a0(x)) → s0(b0(x))
f → f
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))
b0(b0(x)) → a0(x)
b0(b0(x)) → a0(x)
POL(S0(x1)) = x1
POL(a0(x1)) = 2 + 2·x1
POL(b0(x1)) = 2 + 2·x1
POL(f) = 0
POL(s0(x1)) = 2 + 2·x1
S0(a0(x)) → S0(b0(x))
s0(a0(x)) → s0(b0(x))
f → f
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))
S0(a0(x)) → S0(b0(x))
s0(a0(x)) → s0(b0(x))
POL(S0(x1)) = x1
POL(a0(x1)) = 1 + 2·x1
POL(b0(x1)) = x1
POL(f) = 0
POL(s0(x1)) = 1 + 2·x1
f → f
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = 2·x1
POL(s(x1)) = 3 + 2·x1
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
s(a(x)) → S(b(x))
POL(A(x1)) = 1 + x1
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x2
POL(S(x1)) = 2 + 2·x1
POL(a(x1)) = 3 + 2·x1
POL(b(x1)) = 3 + 2·x1
POL(f(x1, x2)) = 0
POL(s(x1)) = 3 + 2·x1
s(a(x)) → S(b(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
a_1 =
b_1 =
S_1 =
f_2 = 0, 1
Found this filtering by looking at the following order that orders at least one DP strictly:Polynomial interpretation [POLO]:
POL(S(x1)) = x1
POL(a(x1)) = 2 + 2·x1
POL(b(x1)) = 1 + 2·x1
POL(f(x1, x2)) = 0
POL(s(x1)) = x1
S0(a0(x)) → S0(b0(x))
s0(a0(x)) → s0(b0(x))
f → f
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))
b0(b0(x)) → a0(x)
b0(b0(x)) → a0(x)
POL(S0(x1)) = x1
POL(a0(x1)) = 2 + 2·x1
POL(b0(x1)) = 2 + 2·x1
POL(f) = 0
POL(s0(x1)) = 2 + 2·x1
S0(a0(x)) → S0(b0(x))
s0(a0(x)) → s0(b0(x))
f → f
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))
S0(a0(x)) → S0(b0(x))
s0(a0(x)) → s0(b0(x))
POL(S0(x1)) = x1
POL(a0(x1)) = 1 + 2·x1
POL(b0(x1)) = x1
POL(f) = 0
POL(s0(x1)) = 1 + 2·x1
f → f
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = 0
POL(s(x1)) = 3 + 2·x1
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
b(b(x)) → a(x)
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
s(a(x)) → s(B(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(b(x)) → a(x)
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 3 + x1
POL(b(x1)) = 2 + x1
POL(f(x1, x2)) = 3·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = 2·x1
POL(s(x1)) = 3 + 2·x1
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
s(a(x)) → S(b(x))
s(a(x)) → s(b(x))
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 2 + x1
POL(b(x1)) = 1 + x1
POL(f(x1, x2)) = 2·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
s(a(x)) → S(b(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → S(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
POL(A(x1)) = 2·x12
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = x1
POL(s(x1)) = 3 + 2·x1
s(a(x)) → S(b(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
s(a(x)) → S(b(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(b(x)) → a(x)
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 3 + x1
POL(b(x1)) = 2 + x1
POL(f(x1, x2)) = 3·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = 0
POL(s(x1)) = 3 + 2·x1
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
b(b(x)) → a(x)
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
s(a(x)) → s(B(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(b(x)) → a(x)
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 3 + x1
POL(b(x1)) = 2 + x1
POL(f(x1, x2)) = 3·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
b(b(x)) → A(x)
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → A(x)
s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = x1
POL(s(x1)) = 3 + 2·x1
b(b(x)) → A(x)
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → A(x)
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2 + 2·x2
POL(S(x1)) = 2 + 2·x1
POL(a(x1)) = 3 + 2·x1
POL(b(x1)) = 3 + 2·x1
POL(f(x1, x2)) = 0
POL(s(x1)) = 3 + 2·x1
b(b(x)) → A(x)
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
POL(A(x1)) = 0
POL(B(x1)) = 2
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = 0
POL(s(x1)) = 3 + 2·x1
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
b(b(x)) → a(x)
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
s(a(x)) → S(b(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(b(x)) → a(x)
POL(A(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 3 + x1
POL(b(x1)) = 2 + x1
POL(f(x1, x2)) = 3·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → S(b(x))
s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → S(b(x))
POL(A(x1)) = 3·x12
POL(B(x1)) = 2
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = x1
POL(s(x1)) = 3 + 2·x1
s(a(x)) → S(b(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
a_1 =
b_1 =
S_1 =
f_2 = 0, 1
Found this filtering by looking at the following order that orders at least one DP strictly:Polynomial interpretation [POLO]:
POL(S(x1)) = x1
POL(a(x1)) = 2 + 2·x1
POL(b(x1)) = 1 + 2·x1
POL(f(x1, x2)) = 0
POL(s(x1)) = x1
S0(a0(x)) → S0(b0(x))
s0(a0(x)) → s0(b0(x))
f → f
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))
b0(b0(x)) → a0(x)
b0(b0(x)) → a0(x)
POL(S0(x1)) = x1
POL(a0(x1)) = 2 + 2·x1
POL(b0(x1)) = 2 + 2·x1
POL(f) = 0
POL(s0(x1)) = 2 + 2·x1
S0(a0(x)) → S0(b0(x))
s0(a0(x)) → s0(b0(x))
f → f
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))
S0(a0(x)) → S0(b0(x))
s0(a0(x)) → s0(b0(x))
POL(S0(x1)) = x1
POL(a0(x1)) = 1 + 2·x1
POL(b0(x1)) = x1
POL(f) = 0
POL(s0(x1)) = 1 + 2·x1
f → f
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))
s(a(x)) → s(B(x))
s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → s(B(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = x1
POL(s(x1)) = 3 + 2·x1
s(a(x)) → s(B(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = 2·x1
POL(s(x1)) = 3 + 2·x1
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
b(b(x)) → a(x)
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
s(a(x)) → S(b(x))
s(a(x)) → s(b(x))
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 2 + x1
POL(b(x1)) = 1 + x1
POL(f(x1, x2)) = 2·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
b(b(x)) → a(x)
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = 2·x1
POL(s(x1)) = 3 + 2·x1
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
POL(A(x1)) = 1 + x1
POL(B(x1)) = 1 + x1
POL(F(x1, x2)) = x1·x2 + 2·x2
POL(S(x1)) = 2 + 2·x1
POL(a(x1)) = 3 + 2·x1
POL(b(x1)) = 3 + 2·x1
POL(f(x1, x2)) = 0
POL(s(x1)) = 3 + 2·x1
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
b(b(x)) → A(x)
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → A(x)
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = 3·x1
POL(s(x1)) = 3 + 2·x1
b(b(x)) → A(x)
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
b(b(x)) → A(x)
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 3 + x1
POL(b(x1)) = 2 + x1
POL(f(x1, x2)) = 3·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
b(b(x)) → A(x)
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → A(x)
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = 2·x1
POL(s(x1)) = 3 + 2·x1
b(b(x)) → A(x)
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
b(b(x)) → A(x)
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 3 + x1
POL(b(x1)) = 2 + x1
POL(f(x1, x2)) = 3·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → A(x)
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → A(x)
s(b(x)) → B(S(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = 2·x1
POL(s(x1)) = 3 + 2·x1
b(b(x)) → A(x)
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
b(b(x)) → A(x)
s(b(x)) → B(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
POL(A(x1)) = 2 + 2·x1
POL(B(x1)) = 1 + x1
POL(F(x1, x2)) = 0
POL(S(x1)) = 2 + 2·x1
POL(a(x1)) = 3 + 2·x1
POL(b(x1)) = 3 + 2·x1
POL(f(x1, x2)) = 0
POL(s(x1)) = 3 + 2·x1
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = x1
POL(s(x1)) = 3 + 2·x1
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
s(a(x)) → s(B(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(b(x)) → a(x)
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 3 + x1
POL(b(x1)) = 2 + x1
POL(f(x1, x2)) = 3·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
b(b(x)) → A(x)
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → A(x)
s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = x1
POL(s(x1)) = 3 + 2·x1
b(b(x)) → A(x)
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
b(b(x)) → A(x)
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 3 + x1
POL(b(x1)) = 2 + x1
POL(f(x1, x2)) = 3·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
s(a(x)) → s(B(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → s(B(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
POL(A(x1)) = 2
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = 0
POL(s(x1)) = 3 + 2·x1
s(a(x)) → s(B(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
s(a(x)) → s(B(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(b(x)) → a(x)
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 3 + x1
POL(b(x1)) = 2 + x1
POL(f(x1, x2)) = 3·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = x1
POL(s(x1)) = 3 + 2·x1
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
POL(A(x1)) = 1 + x1
POL(B(x1)) = 3 + 2·x1
POL(F(x1, x2)) = 2·x2
POL(S(x1)) = 2 + 2·x1
POL(a(x1)) = 3 + 2·x1
POL(b(x1)) = 3 + 2·x1
POL(f(x1, x2)) = 2·x1
POL(s(x1)) = 3 + 2·x1
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
POL(A(x1)) = 0
POL(B(x1)) = 3 + x1
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = x1
POL(s(x1)) = 3 + 2·x1
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
s(a(x)) → S(b(x))
POL(A(x1)) = 1 + x1
POL(B(x1)) = 2
POL(F(x1, x2)) = 2 + 2·x1·x2 + 2·x2
POL(S(x1)) = 2 + 2·x1
POL(a(x1)) = 3 + 2·x1
POL(b(x1)) = 3 + 2·x1
POL(f(x1, x2)) = 0
POL(s(x1)) = 3 + 2·x1
s(a(x)) → S(b(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
a_1 =
b_1 =
S_1 =
f_2 = 0, 1
Found this filtering by looking at the following order that orders at least one DP strictly:Polynomial interpretation [POLO]:
POL(S(x1)) = x1
POL(a(x1)) = 2 + 2·x1
POL(b(x1)) = 1 + 2·x1
POL(f(x1, x2)) = 0
POL(s(x1)) = x1
S0(a0(x)) → S0(b0(x))
s0(a0(x)) → s0(b0(x))
f → f
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))
b0(b0(x)) → a0(x)
b0(b0(x)) → a0(x)
POL(S0(x1)) = x1
POL(a0(x1)) = 2 + 2·x1
POL(b0(x1)) = 2 + 2·x1
POL(f) = 0
POL(s0(x1)) = 2 + 2·x1
S0(a0(x)) → S0(b0(x))
s0(a0(x)) → s0(b0(x))
f → f
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))
S0(a0(x)) → S0(b0(x))
s0(a0(x)) → s0(b0(x))
POL(S0(x1)) = x1
POL(a0(x1)) = 1 + 2·x1
POL(b0(x1)) = x1
POL(f) = 0
POL(s0(x1)) = 1 + 2·x1
f → f
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = 0
POL(s(x1)) = 3 + 2·x1
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
b(b(x)) → a(x)
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
s(a(x)) → s(B(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(b(x)) → a(x)
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 3 + x1
POL(b(x1)) = 2 + x1
POL(f(x1, x2)) = 3·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = 2·x1
POL(s(x1)) = 3 + 2·x1
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
b(b(x)) → a(x)
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
s(a(x)) → S(b(x))
s(a(x)) → s(b(x))
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 2 + x1
POL(b(x1)) = 1 + x1
POL(f(x1, x2)) = 2·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
b(b(x)) → a(x)
b(b(x)) → A(x)
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → A(x)
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = x1
POL(s(x1)) = 3 + 2·x1
b(b(x)) → A(x)
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
b(b(x)) → A(x)
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 3 + x1
POL(b(x1)) = 2 + x1
POL(f(x1, x2)) = 3·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = 2·x1
POL(s(x1)) = 3 + 2·x1
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
s(a(x)) → S(b(x))
s(a(x)) → s(b(x))
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 2 + x1
POL(b(x1)) = 1 + x1
POL(f(x1, x2)) = 2·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = 2·x1
POL(s(x1)) = 3 + 2·x1
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
POL(A(x1)) = 1 + x1
POL(B(x1)) = 1 + x1
POL(F(x1, x2)) = x1·x2 + 2·x2
POL(S(x1)) = 2 + 2·x1
POL(a(x1)) = 3 + 2·x1
POL(b(x1)) = 3 + 2·x1
POL(f(x1, x2)) = 0
POL(s(x1)) = 3 + 2·x1
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = x1
POL(s(x1)) = 3 + 2·x1
s(a(x)) → s(B(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
b(b(x)) → a(x)
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
s(a(x)) → s(B(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(b(x)) → a(x)
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 3 + x1
POL(b(x1)) = 2 + x1
POL(f(x1, x2)) = 3·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = 2·x1
POL(s(x1)) = 3 + 2·x1
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
b(b(x)) → a(x)
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
s(a(x)) → S(b(x))
s(a(x)) → s(b(x))
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 2 + x1
POL(b(x1)) = 1 + x1
POL(f(x1, x2)) = 2·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
b(b(x)) → a(x)
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:
s(a(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
POL(A(x1)) = 0
POL(B(x1)) = 0
POL(F(x1, x2)) = 2·x1
POL(S(x1)) = 0
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(f(x1, x2)) = 2·x1
POL(s(x1)) = 3 + 2·x1
s(a(x)) → S(b(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
b(b(x)) → a(x)
We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:
s(a(x)) → S(b(x))
s(a(x)) → s(b(x))
POL(A(x1)) = 2·x1
POL(B(x1)) = 2·x1
POL(S(x1)) = 2·x1
POL(a(x1)) = 2 + x1
POL(b(x1)) = 1 + x1
POL(f(x1, x2)) = 2·x1 + 2·x2
POL(s(x1)) = 3 + x1
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
b(b(x)) → a(x)