YES Termination proof of Relative_05_rt1-5.ari

(0) Obligation:

Relative term rewrite system:
The relative TRS consists of the following R rules:

s(a(x)) → s(b(x))
b(b(x)) → a(x)

The relative TRS consists of the following S rules:

f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))

(1) RelTRStoRelADPProof (EQUIVALENT transformation)

We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].

(2) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))
s(a(x)) → s(B(x))
b(b(x)) → A(x)

and relative ADPs:

f(s(x), y) → F(x, S(y))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
s(a(x)) → A(S(x))
a(s(x)) → S(A(x))

(3) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
1 SCC with nodes from P_abs,
35 Lassos,
Result: This relative DT problem is equivalent to 36 subproblems.

(4) Complex Obligation (AND)

(5) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))
b(b(x)) → A(x)
s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))

(6) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


s(a(x)) → s(B(x))
s(a(x)) → S(b(x))

c:

b(b(x)) → A(x)

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 2 + x1   
POL(b(x1)) = 1 + x1   
POL(f(x1, x2)) = 2·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(7) Obligation:

Relative ADP Problem with
absolute ADPs:

b(b(x)) → A(x)

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))

(8) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


b(b(x)) → A(x)

c:

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 1 + x1   
POL(b(x1)) = 3 + x1   
POL(f(x1, x2)) = 2·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(9) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))

(10) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(11) YES

(12) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
b(b(x)) → a(x)

(13) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


s(a(x)) → s(B(x))

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(b(x)) → a(x)

c:

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 3 + x1   
POL(b(x1)) = 2 + x1   
POL(f(x1, x2)) = 3·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(14) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))

(15) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(16) YES

(17) Obligation:

Relative ADP Problem with
absolute ADPs:

b(b(x)) → A(x)

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))

(18) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


b(b(x)) → A(x)

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))

c:

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 3 + x1   
POL(b(x1)) = 2 + x1   
POL(f(x1, x2)) = 3·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(19) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))

(20) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(21) YES

(22) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
b(b(x)) → a(x)

(23) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


s(a(x)) → S(b(x))

s(a(x)) → s(b(x))

c:

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 2 + x1   
POL(b(x1)) = 1 + x1   
POL(f(x1, x2)) = 2·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(24) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
b(b(x)) → a(x)

(25) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(26) YES

(27) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(28) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → s(B(x))

Relative ADPs:

s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = x1   
POL(s(x1)) = 3 + 2·x1   

(29) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(30) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


s(a(x)) → s(B(x))

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(b(x)) → a(x)

c:

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 3 + x1   
POL(b(x1)) = 2 + x1   
POL(f(x1, x2)) = 3·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(31) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))

(32) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(33) YES

(34) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(35) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → s(B(x))

Relative ADPs:

s(b(x)) → B(S(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2 + x1 + 2·x12   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = 0   
POL(s(x1)) = 3 + 2·x1   

(36) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(37) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


s(a(x)) → s(B(x))

Relative ADPs:

s(b(x)) → B(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)


No rules with annotations remain.
Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2 + x12   
POL(B(x1)) = 1 + x1   
POL(F(x1, x2)) = 2·x2   
POL(S(x1)) = 2 + 2·x1   
POL(a(x1)) = 3 + 2·x1   
POL(b(x1)) = 3 + 2·x1   
POL(f(x1, x2)) = 0   
POL(s(x1)) = 3 + 2·x1   

(38) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(39) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(40) YES

(41) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(42) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → s(B(x))

Relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = 0   
POL(s(x1)) = 3 + 2·x1   

(43) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
b(b(x)) → a(x)

(44) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


s(a(x)) → s(B(x))

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(b(x)) → a(x)

c:

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 3 + x1   
POL(b(x1)) = 2 + x1   
POL(f(x1, x2)) = 3·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(45) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))

(46) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(47) YES

(48) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(49) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → S(b(x))

Relative ADPs:

s(a(x)) → A(S(x))
s(b(x)) → B(S(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = 2·x1   
POL(s(x1)) = 3 + 2·x1   

(50) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(51) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → S(b(x))

Relative ADPs:
none


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 1 + x1   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x2   
POL(S(x1)) = 2 + 2·x1   
POL(a(x1)) = 3 + 2·x1   
POL(b(x1)) = 3 + 2·x1   
POL(f(x1, x2)) = 0   
POL(s(x1)) = 3 + 2·x1   

(52) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(53) RelADPCleverAfsProof (SOUND transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 = a_1 = b_1 = S_1 = f_2 = 0, 1
Found this filtering by looking at the following order that orders at least one DP strictly:Polynomial interpretation [POLO]:


POL(S(x1)) = x1   
POL(a(x1)) = 2 + 2·x1   
POL(b(x1)) = 1 + 2·x1   
POL(f(x1, x2)) = 0   
POL(s(x1)) = x1   

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S0(a0(x)) → S0(b0(x))

The TRS R consists of the following rules:

s0(a0(x)) → s0(b0(x))
ff
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))
b0(b0(x)) → a0(x)

Q is empty.
We have to consider all (P,Q,R)-chains.

(55) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

b0(b0(x)) → a0(x)

Used ordering: Polynomial interpretation [POLO]:

POL(S0(x1)) = x1   
POL(a0(x1)) = 2 + 2·x1   
POL(b0(x1)) = 2 + 2·x1   
POL(f) = 0   
POL(s0(x1)) = 2 + 2·x1   

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S0(a0(x)) → S0(b0(x))

The TRS R consists of the following rules:

s0(a0(x)) → s0(b0(x))
ff
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))

Q is empty.
We have to consider all (P,Q,R)-chains.

(57) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

S0(a0(x)) → S0(b0(x))

Strictly oriented rules of the TRS R:

s0(a0(x)) → s0(b0(x))

Used ordering: Polynomial interpretation [POLO]:

POL(S0(x1)) = x1   
POL(a0(x1)) = 1 + 2·x1   
POL(b0(x1)) = x1   
POL(f) = 0   
POL(s0(x1)) = 1 + 2·x1   

(58) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

ff
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))

Q is empty.
We have to consider all (P,Q,R)-chains.

(59) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(60) YES

(61) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(62) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → S(b(x))

Relative ADPs:

s(b(x)) → B(S(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = x1   
POL(s(x1)) = 3 + 2·x1   

(63) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(64) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(b(x)) → B(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → S(b(x))

Relative ADPs:
none


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2   
POL(B(x1)) = 1 + x1   
POL(F(x1, x2)) = 2 + 2·x2   
POL(S(x1)) = 2 + 2·x1   
POL(a(x1)) = 3 + 2·x1   
POL(b(x1)) = 3 + 2·x1   
POL(f(x1, x2)) = 0   
POL(s(x1)) = 3 + 2·x1   

(65) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(66) RelADPCleverAfsProof (SOUND transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 = a_1 = b_1 = S_1 = f_2 = 0, 1
Found this filtering by looking at the following order that orders at least one DP strictly:Polynomial interpretation [POLO]:


POL(S(x1)) = x1   
POL(a(x1)) = 2 + 2·x1   
POL(b(x1)) = 1 + 2·x1   
POL(f(x1, x2)) = 0   
POL(s(x1)) = x1   

(67) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S0(a0(x)) → S0(b0(x))

The TRS R consists of the following rules:

s0(a0(x)) → s0(b0(x))
ff
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))
b0(b0(x)) → a0(x)

Q is empty.
We have to consider all (P,Q,R)-chains.

(68) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

b0(b0(x)) → a0(x)

Used ordering: Polynomial interpretation [POLO]:

POL(S0(x1)) = x1   
POL(a0(x1)) = 2 + 2·x1   
POL(b0(x1)) = 2 + 2·x1   
POL(f) = 0   
POL(s0(x1)) = 2 + 2·x1   

(69) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S0(a0(x)) → S0(b0(x))

The TRS R consists of the following rules:

s0(a0(x)) → s0(b0(x))
ff
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))

Q is empty.
We have to consider all (P,Q,R)-chains.

(70) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

S0(a0(x)) → S0(b0(x))

Strictly oriented rules of the TRS R:

s0(a0(x)) → s0(b0(x))

Used ordering: Polynomial interpretation [POLO]:

POL(S0(x1)) = x1   
POL(a0(x1)) = 1 + 2·x1   
POL(b0(x1)) = x1   
POL(f) = 0   
POL(s0(x1)) = 1 + 2·x1   

(71) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

ff
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))

Q is empty.
We have to consider all (P,Q,R)-chains.

(72) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(73) YES

(74) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(75) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → S(b(x))

Relative ADPs:

s(a(x)) → A(S(x))
s(b(x)) → B(S(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = 2·x1   
POL(s(x1)) = 3 + 2·x1   

(76) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(77) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → S(b(x))

Relative ADPs:
none


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 1 + x1   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x2   
POL(S(x1)) = 2 + 2·x1   
POL(a(x1)) = 3 + 2·x1   
POL(b(x1)) = 3 + 2·x1   
POL(f(x1, x2)) = 0   
POL(s(x1)) = 3 + 2·x1   

(78) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(79) RelADPCleverAfsProof (SOUND transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 = a_1 = b_1 = S_1 = f_2 = 0, 1
Found this filtering by looking at the following order that orders at least one DP strictly:Polynomial interpretation [POLO]:


POL(S(x1)) = x1   
POL(a(x1)) = 2 + 2·x1   
POL(b(x1)) = 1 + 2·x1   
POL(f(x1, x2)) = 0   
POL(s(x1)) = x1   

(80) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S0(a0(x)) → S0(b0(x))

The TRS R consists of the following rules:

s0(a0(x)) → s0(b0(x))
ff
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))
b0(b0(x)) → a0(x)

Q is empty.
We have to consider all (P,Q,R)-chains.

(81) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

b0(b0(x)) → a0(x)

Used ordering: Polynomial interpretation [POLO]:

POL(S0(x1)) = x1   
POL(a0(x1)) = 2 + 2·x1   
POL(b0(x1)) = 2 + 2·x1   
POL(f) = 0   
POL(s0(x1)) = 2 + 2·x1   

(82) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S0(a0(x)) → S0(b0(x))

The TRS R consists of the following rules:

s0(a0(x)) → s0(b0(x))
ff
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))

Q is empty.
We have to consider all (P,Q,R)-chains.

(83) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

S0(a0(x)) → S0(b0(x))

Strictly oriented rules of the TRS R:

s0(a0(x)) → s0(b0(x))

Used ordering: Polynomial interpretation [POLO]:

POL(S0(x1)) = x1   
POL(a0(x1)) = 1 + 2·x1   
POL(b0(x1)) = x1   
POL(f) = 0   
POL(s0(x1)) = 1 + 2·x1   

(84) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

ff
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))

Q is empty.
We have to consider all (P,Q,R)-chains.

(85) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(86) YES

(87) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(88) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → s(B(x))

Relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = 0   
POL(s(x1)) = 3 + 2·x1   

(89) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
b(b(x)) → a(x)

(90) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


s(a(x)) → s(B(x))

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(b(x)) → a(x)

c:

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 3 + x1   
POL(b(x1)) = 2 + x1   
POL(f(x1, x2)) = 3·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(91) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))

(92) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(93) YES

(94) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(95) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → S(b(x))

Relative ADPs:

s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = 2·x1   
POL(s(x1)) = 3 + 2·x1   

(96) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(97) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


s(a(x)) → S(b(x))

s(a(x)) → s(b(x))

c:

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 2 + x1   
POL(b(x1)) = 1 + x1   
POL(f(x1, x2)) = 2·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(98) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(99) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(100) YES

(101) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(102) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → S(b(x))

Relative ADPs:

s(b(x)) → B(S(x))
b(s(x)) → S(B(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x12   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = x1   
POL(s(x1)) = 3 + 2·x1   

(103) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(104) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


s(a(x)) → S(b(x))

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(b(x)) → a(x)

c:

Ordered with Polynomial interpretation [POLO]:

POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 3 + x1   
POL(b(x1)) = 2 + x1   
POL(f(x1, x2)) = 3·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(105) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))

(106) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(107) YES

(108) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(109) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → s(B(x))

Relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = 0   
POL(s(x1)) = 3 + 2·x1   

(110) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
b(b(x)) → a(x)

(111) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


s(a(x)) → s(B(x))

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(b(x)) → a(x)

c:

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 3 + x1   
POL(b(x1)) = 2 + x1   
POL(f(x1, x2)) = 3·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(112) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))

(113) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(114) YES

(115) Obligation:

Relative ADP Problem with
absolute ADPs:

b(b(x)) → A(x)

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))

(116) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

b(b(x)) → A(x)

Relative ADPs:

s(a(x)) → A(S(x))
s(b(x)) → B(S(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = x1   
POL(s(x1)) = 3 + 2·x1   

(117) Obligation:

Relative ADP Problem with
absolute ADPs:

b(b(x)) → A(x)

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))

(118) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

b(b(x)) → A(x)

Relative ADPs:
none


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2 + 2·x2   
POL(S(x1)) = 2 + 2·x1   
POL(a(x1)) = 3 + 2·x1   
POL(b(x1)) = 3 + 2·x1   
POL(f(x1, x2)) = 0   
POL(s(x1)) = 3 + 2·x1   

(119) Obligation:

Relative ADP Problem with
absolute ADPs:

b(b(x)) → A(x)

and relative ADPs:

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))

(120) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(121) TRUE

(122) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(123) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → S(b(x))

Relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 2   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = 0   
POL(s(x1)) = 3 + 2·x1   

(124) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
b(b(x)) → a(x)

(125) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


s(a(x)) → S(b(x))

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(b(x)) → a(x)

c:

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 3 + x1   
POL(b(x1)) = 2 + x1   
POL(f(x1, x2)) = 3·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(126) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))

(127) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(128) YES

(129) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(130) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → S(b(x))

Relative ADPs:
none


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 3·x12   
POL(B(x1)) = 2   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = x1   
POL(s(x1)) = 3 + 2·x1   

(131) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(132) RelADPCleverAfsProof (SOUND transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 = a_1 = b_1 = S_1 = f_2 = 0, 1
Found this filtering by looking at the following order that orders at least one DP strictly:Polynomial interpretation [POLO]:


POL(S(x1)) = x1   
POL(a(x1)) = 2 + 2·x1   
POL(b(x1)) = 1 + 2·x1   
POL(f(x1, x2)) = 0   
POL(s(x1)) = x1   

(133) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S0(a0(x)) → S0(b0(x))

The TRS R consists of the following rules:

s0(a0(x)) → s0(b0(x))
ff
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))
b0(b0(x)) → a0(x)

Q is empty.
We have to consider all (P,Q,R)-chains.

(134) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

b0(b0(x)) → a0(x)

Used ordering: Polynomial interpretation [POLO]:

POL(S0(x1)) = x1   
POL(a0(x1)) = 2 + 2·x1   
POL(b0(x1)) = 2 + 2·x1   
POL(f) = 0   
POL(s0(x1)) = 2 + 2·x1   

(135) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S0(a0(x)) → S0(b0(x))

The TRS R consists of the following rules:

s0(a0(x)) → s0(b0(x))
ff
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))

Q is empty.
We have to consider all (P,Q,R)-chains.

(136) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

S0(a0(x)) → S0(b0(x))

Strictly oriented rules of the TRS R:

s0(a0(x)) → s0(b0(x))

Used ordering: Polynomial interpretation [POLO]:

POL(S0(x1)) = x1   
POL(a0(x1)) = 1 + 2·x1   
POL(b0(x1)) = x1   
POL(f) = 0   
POL(s0(x1)) = 1 + 2·x1   

(137) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

ff
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))

Q is empty.
We have to consider all (P,Q,R)-chains.

(138) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(139) YES

(140) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(141) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → s(B(x))

Relative ADPs:
none


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = x1   
POL(s(x1)) = 3 + 2·x1   

(142) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(143) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
0 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 0 subproblems.

(144) TRUE

(145) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(146) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → S(b(x))

Relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = 2·x1   
POL(s(x1)) = 3 + 2·x1   

(147) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
b(b(x)) → a(x)

(148) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


s(a(x)) → S(b(x))

s(a(x)) → s(b(x))

c:

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 2 + x1   
POL(b(x1)) = 1 + x1   
POL(f(x1, x2)) = 2·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(149) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
b(b(x)) → a(x)

(150) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(151) YES

(152) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(153) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → s(B(x))

Relative ADPs:

s(a(x)) → A(S(x))
s(b(x)) → B(S(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = 2·x1   
POL(s(x1)) = 3 + 2·x1   

(154) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(155) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


s(a(x)) → s(B(x))

Relative ADPs:

s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)


No rules with annotations remain.
Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 1 + x1   
POL(B(x1)) = 1 + x1   
POL(F(x1, x2)) = x1·x2 + 2·x2   
POL(S(x1)) = 2 + 2·x1   
POL(a(x1)) = 3 + 2·x1   
POL(b(x1)) = 3 + 2·x1   
POL(f(x1, x2)) = 0   
POL(s(x1)) = 3 + 2·x1   

(156) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(157) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(158) YES

(159) Obligation:

Relative ADP Problem with
absolute ADPs:

b(b(x)) → A(x)

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
f(s(x), y) → F(x, S(y))

(160) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
f(s(x), y) → F(x, S(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

b(b(x)) → A(x)

Relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = 3·x1   
POL(s(x1)) = 3 + 2·x1   

(161) Obligation:

Relative ADP Problem with
absolute ADPs:

b(b(x)) → A(x)

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))

(162) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


b(b(x)) → A(x)

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))

c:

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 3 + x1   
POL(b(x1)) = 2 + x1   
POL(f(x1, x2)) = 3·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(163) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))

(164) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(165) YES

(166) Obligation:

Relative ADP Problem with
absolute ADPs:

b(b(x)) → A(x)

and relative ADPs:

s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))

(167) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

b(b(x)) → A(x)

Relative ADPs:

s(b(x)) → B(S(x))
b(s(x)) → S(B(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = 2·x1   
POL(s(x1)) = 3 + 2·x1   

(168) Obligation:

Relative ADP Problem with
absolute ADPs:

b(b(x)) → A(x)

and relative ADPs:

s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))

(169) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


b(b(x)) → A(x)

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))

c:

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 3 + x1   
POL(b(x1)) = 2 + x1   
POL(f(x1, x2)) = 3·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(170) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))

(171) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(172) YES

(173) Obligation:

Relative ADP Problem with
absolute ADPs:

b(b(x)) → A(x)

and relative ADPs:

s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))

(174) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

b(b(x)) → A(x)

Relative ADPs:

s(b(x)) → B(S(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = 2·x1   
POL(s(x1)) = 3 + 2·x1   

(175) Obligation:

Relative ADP Problem with
absolute ADPs:

b(b(x)) → A(x)

and relative ADPs:

s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))

(176) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


b(b(x)) → A(x)

Relative ADPs:

s(b(x)) → B(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))


No rules with annotations remain.
Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2 + 2·x1   
POL(B(x1)) = 1 + x1   
POL(F(x1, x2)) = 0   
POL(S(x1)) = 2 + 2·x1   
POL(a(x1)) = 3 + 2·x1   
POL(b(x1)) = 3 + 2·x1   
POL(f(x1, x2)) = 0   
POL(s(x1)) = 3 + 2·x1   

(177) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(178) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(179) YES

(180) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(181) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → s(B(x))

Relative ADPs:

s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = x1   
POL(s(x1)) = 3 + 2·x1   

(182) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(183) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


s(a(x)) → s(B(x))

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(b(x)) → a(x)

c:

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 3 + x1   
POL(b(x1)) = 2 + x1   
POL(f(x1, x2)) = 3·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(184) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))

(185) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(186) YES

(187) Obligation:

Relative ADP Problem with
absolute ADPs:

b(b(x)) → A(x)

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))

(188) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

b(b(x)) → A(x)

Relative ADPs:

s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = x1   
POL(s(x1)) = 3 + 2·x1   

(189) Obligation:

Relative ADP Problem with
absolute ADPs:

b(b(x)) → A(x)

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))

(190) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


b(b(x)) → A(x)

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))

c:

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 3 + x1   
POL(b(x1)) = 2 + x1   
POL(f(x1, x2)) = 3·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(191) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))

(192) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(193) YES

(194) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(195) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → s(B(x))

Relative ADPs:

s(b(x)) → B(S(x))
b(s(x)) → S(B(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = 0   
POL(s(x1)) = 3 + 2·x1   

(196) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(197) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


s(a(x)) → s(B(x))

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(b(x)) → a(x)

c:

Ordered with Polynomial interpretation [POLO]:

POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 3 + x1   
POL(b(x1)) = 2 + x1   
POL(f(x1, x2)) = 3·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(198) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))

(199) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(200) YES

(201) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(202) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → s(B(x))

Relative ADPs:

s(a(x)) → A(S(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = x1   
POL(s(x1)) = 3 + 2·x1   

(203) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(204) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


s(a(x)) → s(B(x))

Relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)


No rules with annotations remain.
Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 1 + x1   
POL(B(x1)) = 3 + 2·x1   
POL(F(x1, x2)) = 2·x2   
POL(S(x1)) = 2 + 2·x1   
POL(a(x1)) = 3 + 2·x1   
POL(b(x1)) = 3 + 2·x1   
POL(f(x1, x2)) = 2·x1   
POL(s(x1)) = 3 + 2·x1   

(205) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(206) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(207) YES

(208) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(209) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → S(b(x))

Relative ADPs:

s(a(x)) → A(S(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 3 + x1   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = x1   
POL(s(x1)) = 3 + 2·x1   

(210) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(211) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → S(b(x))

Relative ADPs:
none


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 1 + x1   
POL(B(x1)) = 2   
POL(F(x1, x2)) = 2 + 2·x1·x2 + 2·x2   
POL(S(x1)) = 2 + 2·x1   
POL(a(x1)) = 3 + 2·x1   
POL(b(x1)) = 3 + 2·x1   
POL(f(x1, x2)) = 0   
POL(s(x1)) = 3 + 2·x1   

(212) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(213) RelADPCleverAfsProof (SOUND transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 = a_1 = b_1 = S_1 = f_2 = 0, 1
Found this filtering by looking at the following order that orders at least one DP strictly:Polynomial interpretation [POLO]:


POL(S(x1)) = x1   
POL(a(x1)) = 2 + 2·x1   
POL(b(x1)) = 1 + 2·x1   
POL(f(x1, x2)) = 0   
POL(s(x1)) = x1   

(214) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S0(a0(x)) → S0(b0(x))

The TRS R consists of the following rules:

s0(a0(x)) → s0(b0(x))
ff
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))
b0(b0(x)) → a0(x)

Q is empty.
We have to consider all (P,Q,R)-chains.

(215) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

b0(b0(x)) → a0(x)

Used ordering: Polynomial interpretation [POLO]:

POL(S0(x1)) = x1   
POL(a0(x1)) = 2 + 2·x1   
POL(b0(x1)) = 2 + 2·x1   
POL(f) = 0   
POL(s0(x1)) = 2 + 2·x1   

(216) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S0(a0(x)) → S0(b0(x))

The TRS R consists of the following rules:

s0(a0(x)) → s0(b0(x))
ff
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))

Q is empty.
We have to consider all (P,Q,R)-chains.

(217) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

S0(a0(x)) → S0(b0(x))

Strictly oriented rules of the TRS R:

s0(a0(x)) → s0(b0(x))

Used ordering: Polynomial interpretation [POLO]:

POL(S0(x1)) = x1   
POL(a0(x1)) = 1 + 2·x1   
POL(b0(x1)) = x1   
POL(f) = 0   
POL(s0(x1)) = 1 + 2·x1   

(218) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

ff
s0(b0(x)) → b0(s0(x))
b0(s0(x)) → s0(b0(x))
s0(a0(x)) → a0(s0(x))
a0(s0(x)) → s0(a0(x))

Q is empty.
We have to consider all (P,Q,R)-chains.

(219) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(220) YES

(221) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(222) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → s(B(x))

Relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = 0   
POL(s(x1)) = 3 + 2·x1   

(223) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
b(b(x)) → a(x)

(224) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


s(a(x)) → s(B(x))

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(b(x)) → a(x)

c:

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 3 + x1   
POL(b(x1)) = 2 + x1   
POL(f(x1, x2)) = 3·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(225) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))

(226) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(227) YES

(228) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(229) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → S(b(x))

Relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = 2·x1   
POL(s(x1)) = 3 + 2·x1   

(230) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
b(b(x)) → a(x)

(231) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


s(a(x)) → S(b(x))

s(a(x)) → s(b(x))

c:

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 2 + x1   
POL(b(x1)) = 1 + x1   
POL(f(x1, x2)) = 2·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(232) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
b(b(x)) → a(x)

(233) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(234) YES

(235) Obligation:

Relative ADP Problem with
absolute ADPs:

b(b(x)) → A(x)

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
f(s(x), y) → F(x, S(y))

(236) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
f(s(x), y) → F(x, S(y))


The remaining rules can at least be oriented weakly:
Absolute ADPs:

b(b(x)) → A(x)

Relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = x1   
POL(s(x1)) = 3 + 2·x1   

(237) Obligation:

Relative ADP Problem with
absolute ADPs:

b(b(x)) → A(x)

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))

(238) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


b(b(x)) → A(x)

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))

c:

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 3 + x1   
POL(b(x1)) = 2 + x1   
POL(f(x1, x2)) = 3·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(239) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))

(240) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(241) YES

(242) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(243) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → S(b(x))

Relative ADPs:

s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = 2·x1   
POL(s(x1)) = 3 + 2·x1   

(244) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(245) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


s(a(x)) → S(b(x))

s(a(x)) → s(b(x))

c:

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 2 + x1   
POL(b(x1)) = 1 + x1   
POL(f(x1, x2)) = 2·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(246) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(247) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(248) YES

(249) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(250) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → s(B(x))

Relative ADPs:

s(a(x)) → A(S(x))
s(b(x)) → B(S(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = 2·x1   
POL(s(x1)) = 3 + 2·x1   

(251) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → A(S(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(252) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


s(a(x)) → s(B(x))

Relative ADPs:

s(a(x)) → A(S(x))
s(b(x)) → B(S(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → s(b(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)


No rules with annotations remain.
Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 1 + x1   
POL(B(x1)) = 1 + x1   
POL(F(x1, x2)) = x1·x2 + 2·x2   
POL(S(x1)) = 2 + 2·x1   
POL(a(x1)) = 3 + 2·x1   
POL(b(x1)) = 3 + 2·x1   
POL(f(x1, x2)) = 0   
POL(s(x1)) = 3 + 2·x1   

(253) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
s(a(x)) → a(s(x))
a(s(x)) → s(a(x))
b(b(x)) → a(x)

(254) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(255) YES

(256) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(257) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → s(B(x))

Relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = x1   
POL(s(x1)) = 3 + 2·x1   

(258) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → s(B(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))
b(b(x)) → a(x)

(259) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


s(a(x)) → s(B(x))

s(a(x)) → s(b(x))
f(s(x), y) → f(x, s(y))
b(b(x)) → a(x)

c:

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 3 + x1   
POL(b(x1)) = 2 + x1   
POL(f(x1, x2)) = 3·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(260) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → b(s(x))
b(s(x)) → s(b(x))

(261) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(262) YES

(263) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(264) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → S(b(x))

Relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = 2·x1   
POL(s(x1)) = 3 + 2·x1   

(265) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
b(b(x)) → a(x)

(266) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


s(a(x)) → S(b(x))

s(a(x)) → s(b(x))

c:

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 2 + x1   
POL(b(x1)) = 1 + x1   
POL(f(x1, x2)) = 2·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(267) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
b(b(x)) → a(x)

(268) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(269) YES

(270) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))
b(b(x)) → a(x)
f(s(x), y) → F(x, S(y))

(271) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Relative ADPs:


s(a(x)) → s(b(x))
f(s(x), y) → F(x, S(y))
b(b(x)) → a(x)


The remaining rules can at least be oriented weakly:
Absolute ADPs:

s(a(x)) → S(b(x))

Relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
b(s(x)) → S(B(x))


Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 0   
POL(B(x1)) = 0   
POL(F(x1, x2)) = 2·x1   
POL(S(x1)) = 0   
POL(a(x1)) = x1   
POL(b(x1)) = x1   
POL(f(x1, x2)) = 2·x1   
POL(s(x1)) = 3 + 2·x1   

(272) Obligation:

Relative ADP Problem with
absolute ADPs:

s(a(x)) → S(b(x))

and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(a(x)) → s(b(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
b(b(x)) → a(x)

(273) RelADPRuleRemovalProof (EQUIVALENT transformation)

We use the rule removal processor [IJCAR24].
The following rules can be ordered strictly and therefore removed:


s(a(x)) → S(b(x))

s(a(x)) → s(b(x))

c:

Ordered with Polynomial interpretation [POLO]:

POL(A(x1)) = 2·x1   
POL(B(x1)) = 2·x1   
POL(S(x1)) = 2·x1   
POL(a(x1)) = 2 + x1   
POL(b(x1)) = 1 + x1   
POL(f(x1, x2)) = 2·x1 + 2·x2   
POL(s(x1)) = 3 + x1   

(274) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

s(a(x)) → A(S(x))
a(s(x)) → S(A(x))
s(b(x)) → B(S(x))
f(s(x), y) → f(x, s(y))
b(s(x)) → S(B(x))
b(b(x)) → a(x)

(275) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(276) YES