YES
0 RelTRS
↳1 RelTRStoRelADPProof (⇔, 0 ms)
↳2 RelADPP
↳3 RelADPDepGraphProof (⇔, 0 ms)
↳4 AND
↳5 RelADPP
↳6 RelADPCleverAfsProof (⇒, 24 ms)
↳7 QDP
↳8 MRRProof (⇔, 4 ms)
↳9 QDP
↳10 MRRProof (⇔, 0 ms)
↳11 QDP
↳12 MRRProof (⇔, 0 ms)
↳13 QDP
↳14 MRRProof (⇔, 3 ms)
↳15 QDP
↳16 QDPBoundsTAProof (⇔, 0 ms)
↳17 QDP
↳18 PisEmptyProof (⇔, 0 ms)
↳19 YES
↳20 RelADPP
↳21 RelADPDerelatifyingProof (⇔, 0 ms)
↳22 QDP
↳23 MRRProof (⇔, 0 ms)
↳24 QDP
↳25 PisEmptyProof (⇔, 0 ms)
↳26 YES
↳27 RelADPP
↳28 RelADPCleverAfsProof (⇒, 23 ms)
↳29 QDP
↳30 MRRProof (⇔, 3 ms)
↳31 QDP
↳32 PisEmptyProof (⇔, 0 ms)
↳33 YES
↳34 RelADPP
↳35 RelADPDerelatifyingProof (⇔, 0 ms)
↳36 QDP
↳37 MRRProof (⇔, 0 ms)
↳38 QDP
↳39 MRRProof (⇔, 0 ms)
↳40 QDP
↳41 MRRProof (⇔, 0 ms)
↳42 QDP
↳43 MRRProof (⇔, 0 ms)
↳44 QDP
↳45 MRRProof (⇔, 0 ms)
↳46 QDP
↳47 TransformationProof (⇔, 0 ms)
↳48 QDP
↳49 TransformationProof (⇔, 0 ms)
↳50 QDP
↳51 QDPBoundsTAProof (⇔, 0 ms)
↳52 QDP
↳53 PisEmptyProof (⇔, 0 ms)
↳54 YES
+(0, y) → y
+(s(x), y) → s(+(x, y))
sum1(nil) → 0
sum1(cons(x, y)) → +(x, sum1(y))
sum2(nil, z) → z
sum2(cons(x, y), z) → sum2(y, +(x, z))
tests(0) → true
tests(s(x)) → and(test(rands(rand(0), nil)), x)
test(done(y)) → eq(f(y), g(y))
eq(x, x) → true
rands(0, y) → done(y)
rands(s(x), y) → rands(x, ::(rand(0), y))
rand(x) → rand(s(x))
rand(x) → x
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
+(0, y) → y
+(s(x), y) → s(+1(x, y))
sum1(nil) → 0
sum1(cons(x, y)) → +1(x, sum1(y))
sum1(cons(x, y)) → +(x, SUM1(y))
sum2(nil, z) → z
sum2(cons(x, y), z) → SUM2(y, +(x, z))
sum2(cons(x, y), z) → sum2(y, +1(x, z))
tests(0) → true
tests(s(x)) → and(TEST(rands(rand(0), nil)), x)
tests(s(x)) → and(test(RANDS(rand(0), nil)), x)
tests(s(x)) → and(test(rands(RAND(0), nil)), x)
test(done(y)) → EQ(f(y), g(y))
eq(x, x) → true
rands(0, y) → done(y)
rands(s(x), y) → RANDS(x, ::(rand(0), y))
rands(s(x), y) → rands(x, ::(RAND(0), y))
rand(x) → RAND(s(x))
rand(x) → x
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
4 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 4 subproblems.
+(s(x), y) → s(+1(x, y))
rands(0, y) → done(y)
rands(s(x), y) → rands(x, ::(rand(0), y))
sum1(nil) → 0
tests(0) → true
sum2(cons(x, y), z) → sum2(y, +(x, z))
rand(x) → rand(s(x))
eq(x, x) → true
sum1(cons(x, y)) → +(x, sum1(y))
sum2(nil, z) → z
tests(s(x)) → and(test(rands(rand(0), nil)), x)
test(done(y)) → eq(f(y), g(y))
+(0, y) → y
rand(x) → x
Furthermore, We use an argument filter [LPAR04].
Filtering:rands_2 =
true =
done_1 = 0
sum1_1 =
and_2 =
rand_1 =
g_1 =
nil =
s_1 =
eq_2 = 0, 1
+_2 =
::_2 =
tests_1 =
f_1 =
0 =
+^1_2 =
cons_2 =
test_1 = 0
sum2_2 =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
+1(x1, x2) = +1(x1, x2)
s(x1) = s(x1)
test(x1) = test
done(x1) = done
eq(x1, x2) = eq
f(x1) = f(x1)
g(x1) = g(x1)
true = true
Recursive path order with status [RPO].
Quasi-Precedence:
s1 > +^12
test > [eq, true]
test > f1
test > g1
+^12: multiset
s1: multiset
test: multiset
done: multiset
eq: []
f1: multiset
g1: multiset
true: multiset
+10(s0(x), y) → +10(x, y)
rands0(00, y) → done
rands0(s0(x), y) → rands0(x, ::0(rand0(00), y))
sum10(nil0) → 00
tests0(00) → true0
sum20(cons0(x, y), z) → sum20(y, +0(x, z))
rand0(x) → rand0(s0(x))
eq → true0
sum10(cons0(x, y)) → +0(x, sum10(y))
sum20(nil0, z) → z
tests0(s0(x)) → and0(test, x)
+0(s0(x), y) → s0(+0(x, y))
test → eq
+0(00, y) → y
rand0(x) → x
rands0(00, y) → done
tests0(00) → true0
sum20(cons0(x, y), z) → sum20(y, +0(x, z))
sum10(cons0(x, y)) → +0(x, sum10(y))
sum20(nil0, z) → z
tests0(s0(x)) → and0(test, x)
POL(+0(x1, x2)) = x1 + x2
POL(+10(x1, x2)) = x1 + x2
POL(00) = 0
POL(::0(x1, x2)) = x1 + x2
POL(and0(x1, x2)) = x1 + x2
POL(cons0(x1, x2)) = 1 + x1 + x2
POL(done) = 0
POL(eq) = 0
POL(nil0) = 0
POL(rand0(x1)) = x1
POL(rands0(x1, x2)) = 2 + x1 + 2·x2
POL(s0(x1)) = x1
POL(sum10(x1)) = x1
POL(sum20(x1, x2)) = 2 + 2·x1 + x2
POL(test) = 0
POL(tests0(x1)) = 2 + 2·x1
POL(true0) = 0
+10(s0(x), y) → +10(x, y)
rands0(s0(x), y) → rands0(x, ::0(rand0(00), y))
sum10(nil0) → 00
rand0(x) → rand0(s0(x))
eq → true0
+0(s0(x), y) → s0(+0(x, y))
test → eq
+0(00, y) → y
rand0(x) → x
sum10(nil0) → 00
eq → true0
POL(+0(x1, x2)) = x1 + x2
POL(+10(x1, x2)) = x1 + x2
POL(00) = 0
POL(::0(x1, x2)) = x1 + x2
POL(eq) = 2
POL(nil0) = 0
POL(rand0(x1)) = x1
POL(rands0(x1, x2)) = x1 + 2·x2
POL(s0(x1)) = x1
POL(sum10(x1)) = 2 + 2·x1
POL(test) = 2
POL(true0) = 0
+10(s0(x), y) → +10(x, y)
rands0(s0(x), y) → rands0(x, ::0(rand0(00), y))
rand0(x) → rand0(s0(x))
+0(s0(x), y) → s0(+0(x, y))
test → eq
+0(00, y) → y
rand0(x) → x
test → eq
POL(+0(x1, x2)) = x1 + x2
POL(+10(x1, x2)) = 2·x1 + x2
POL(00) = 0
POL(::0(x1, x2)) = x1 + x2
POL(eq) = 1
POL(rand0(x1)) = x1
POL(rands0(x1, x2)) = x1 + 2·x2
POL(s0(x1)) = x1
POL(test) = 2
+10(s0(x), y) → +10(x, y)
rands0(s0(x), y) → rands0(x, ::0(rand0(00), y))
rand0(x) → rand0(s0(x))
+0(s0(x), y) → s0(+0(x, y))
+0(00, y) → y
rand0(x) → x
+0(00, y) → y
POL(+0(x1, x2)) = 2 + x1 + x2
POL(+10(x1, x2)) = x1 + x2
POL(00) = 0
POL(::0(x1, x2)) = x1 + x2
POL(rand0(x1)) = x1
POL(rands0(x1, x2)) = x1 + 2·x2
POL(s0(x1)) = x1
+10(s0(x), y) → +10(x, y)
rands0(s0(x), y) → rands0(x, ::0(rand0(00), y))
rand0(x) → rand0(s0(x))
+0(s0(x), y) → s0(+0(x, y))
rand0(x) → x
by considering the usable rules:
+10(s0(x), y) → +10(x, y)
rands0(s0(x), y) → rands0(x, ::0(rand0(00), y))
rand0(x) → rand0(s0(x))
+0(s0(x), y) → s0(+0(x, y))
rand0(x) → x
sum2(cons(x, y), z) → SUM2(y, +(x, z))
rands(0, y) → done(y)
rands(s(x), y) → rands(x, ::(rand(0), y))
sum1(nil) → 0
tests(0) → true
sum2(cons(x, y), z) → sum2(y, +(x, z))
rand(x) → rand(s(x))
eq(x, x) → true
sum1(cons(x, y)) → +(x, sum1(y))
sum2(nil, z) → z
tests(s(x)) → and(test(rands(rand(0), nil)), x)
+(s(x), y) → s(+(x, y))
test(done(y)) → eq(f(y), g(y))
+(0, y) → y
rand(x) → x
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
SUM2(cons(x, y), z) → SUM2(y, +(x, z))
rands(0, y) → done(y)
rands(s(x), y) → rands(x, ::(rand(0), y))
sum1(nil) → 0
tests(0) → true
sum2(cons(x, y), z) → sum2(y, +(x, z))
rand(x) → rand(s(x))
eq(x, x) → true
sum1(cons(x, y)) → +(x, sum1(y))
sum2(nil, z) → z
tests(s(x)) → and(test(rands(rand(0), nil)), x)
+(s(x), y) → s(+(x, y))
test(done(y)) → eq(f(y), g(y))
+(0, y) → y
rand(x) → x
SUM2(cons(x, y), z) → SUM2(y, +(x, z))
tests(0) → true
sum2(cons(x, y), z) → sum2(y, +(x, z))
sum1(cons(x, y)) → +(x, sum1(y))
sum2(nil, z) → z
tests(s(x)) → and(test(rands(rand(0), nil)), x)
POL(+(x1, x2)) = x1 + x2
POL(0) = 0
POL(::(x1, x2)) = x1 + x2
POL(SUM2(x1, x2)) = 2·x1 + 2·x2
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 1 + 2·x1 + x2
POL(done(x1)) = x1
POL(eq(x1, x2)) = x1 + x2
POL(f(x1)) = x1
POL(g(x1)) = x1
POL(nil) = 0
POL(rand(x1)) = x1
POL(rands(x1, x2)) = x1 + 2·x2
POL(s(x1)) = x1
POL(sum1(x1)) = x1
POL(sum2(x1, x2)) = 2 + 2·x1 + 2·x2
POL(test(x1)) = 2·x1
POL(tests(x1)) = 2 + 2·x1
POL(true) = 0
rands(0, y) → done(y)
rands(s(x), y) → rands(x, ::(rand(0), y))
sum1(nil) → 0
rand(x) → rand(s(x))
eq(x, x) → true
+(s(x), y) → s(+(x, y))
test(done(y)) → eq(f(y), g(y))
+(0, y) → y
rand(x) → x
sum1(cons(x, y)) → +(x, SUM1(y))
rands(0, y) → done(y)
rands(s(x), y) → rands(x, ::(rand(0), y))
sum1(nil) → 0
tests(0) → true
sum2(cons(x, y), z) → sum2(y, +(x, z))
rand(x) → rand(s(x))
eq(x, x) → true
sum1(cons(x, y)) → +(x, sum1(y))
sum2(nil, z) → z
tests(s(x)) → and(test(rands(rand(0), nil)), x)
+(s(x), y) → s(+(x, y))
test(done(y)) → eq(f(y), g(y))
+(0, y) → y
rand(x) → x
Furthermore, We use an argument filter [LPAR04].
Filtering:rands_2 =
true =
done_1 = 0
sum1_1 =
SUM1_1 =
and_2 =
rand_1 =
g_1 =
nil =
s_1 =
eq_2 = 0, 1
+_2 =
::_2 =
tests_1 =
f_1 =
0 =
cons_2 =
test_1 = 0
sum2_2 =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
SUM1(x1) = x1
cons(x1, x2) = cons(x1, x2)
test(x1) = test
done(x1) = done
eq(x1, x2) = eq
f(x1) = f(x1)
g(x1) = g(x1)
true = true
Recursive path order with status [RPO].
Quasi-Precedence:
test > [eq, true]
test > f1
test > g1
cons2: multiset
test: multiset
done: []
eq: []
f1: multiset
g1: multiset
true: multiset
SUM10(cons0(x, y)) → SUM10(y)
rands0(00, y) → done
rands0(s0(x), y) → rands0(x, ::0(rand0(00), y))
sum10(nil0) → 00
tests0(00) → true0
sum20(cons0(x, y), z) → sum20(y, +0(x, z))
rand0(x) → rand0(s0(x))
eq → true0
sum10(cons0(x, y)) → +0(x, sum10(y))
sum20(nil0, z) → z
tests0(s0(x)) → and0(test, x)
+0(s0(x), y) → s0(+0(x, y))
test → eq
+0(00, y) → y
rand0(x) → x
SUM10(cons0(x, y)) → SUM10(y)
rands0(00, y) → done
tests0(00) → true0
sum20(cons0(x, y), z) → sum20(y, +0(x, z))
sum10(cons0(x, y)) → +0(x, sum10(y))
sum20(nil0, z) → z
tests0(s0(x)) → and0(test, x)
POL(+0(x1, x2)) = x1 + x2
POL(00) = 0
POL(::0(x1, x2)) = x1 + x2
POL(SUM10(x1)) = x1
POL(and0(x1, x2)) = x1 + x2
POL(cons0(x1, x2)) = 1 + x1 + x2
POL(done) = 0
POL(eq) = 0
POL(nil0) = 0
POL(rand0(x1)) = x1
POL(rands0(x1, x2)) = 2 + x1 + 2·x2
POL(s0(x1)) = x1
POL(sum10(x1)) = x1
POL(sum20(x1, x2)) = 2 + 2·x1 + x2
POL(test) = 0
POL(tests0(x1)) = 2 + 2·x1
POL(true0) = 0
rands0(s0(x), y) → rands0(x, ::0(rand0(00), y))
sum10(nil0) → 00
rand0(x) → rand0(s0(x))
eq → true0
+0(s0(x), y) → s0(+0(x, y))
test → eq
+0(00, y) → y
rand0(x) → x
rands(s(x), y) → RANDS(x, ::(rand(0), y))
rands(0, y) → done(y)
rands(s(x), y) → rands(x, ::(rand(0), y))
sum1(nil) → 0
tests(0) → true
sum2(cons(x, y), z) → sum2(y, +(x, z))
rand(x) → rand(s(x))
eq(x, x) → true
sum1(cons(x, y)) → +(x, sum1(y))
sum2(nil, z) → z
tests(s(x)) → and(test(rands(rand(0), nil)), x)
+(s(x), y) → s(+(x, y))
test(done(y)) → eq(f(y), g(y))
+(0, y) → y
rand(x) → x
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
RANDS(s(x), y) → RANDS(x, ::(rand(0), y))
rands(0, y) → done(y)
rands(s(x), y) → rands(x, ::(rand(0), y))
sum1(nil) → 0
tests(0) → true
sum2(cons(x, y), z) → sum2(y, +(x, z))
rand(x) → rand(s(x))
eq(x, x) → true
sum1(cons(x, y)) → +(x, sum1(y))
sum2(nil, z) → z
tests(s(x)) → and(test(rands(rand(0), nil)), x)
+(s(x), y) → s(+(x, y))
test(done(y)) → eq(f(y), g(y))
+(0, y) → y
rand(x) → x
sum2(cons(x, y), z) → sum2(y, +(x, z))
sum1(cons(x, y)) → +(x, sum1(y))
sum2(nil, z) → z
POL(+(x1, x2)) = x1 + x2
POL(0) = 0
POL(::(x1, x2)) = x1 + x2
POL(RANDS(x1, x2)) = x1 + x2
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 1 + x1 + x2
POL(done(x1)) = 2·x1
POL(eq(x1, x2)) = x1 + x2
POL(f(x1)) = x1
POL(g(x1)) = x1
POL(nil) = 0
POL(rand(x1)) = x1
POL(rands(x1, x2)) = x1 + 2·x2
POL(s(x1)) = x1
POL(sum1(x1)) = x1
POL(sum2(x1, x2)) = 2 + 2·x1 + x2
POL(test(x1)) = 2·x1
POL(tests(x1)) = 2·x1
POL(true) = 0
RANDS(s(x), y) → RANDS(x, ::(rand(0), y))
rands(0, y) → done(y)
rands(s(x), y) → rands(x, ::(rand(0), y))
sum1(nil) → 0
tests(0) → true
rand(x) → rand(s(x))
eq(x, x) → true
tests(s(x)) → and(test(rands(rand(0), nil)), x)
+(s(x), y) → s(+(x, y))
test(done(y)) → eq(f(y), g(y))
+(0, y) → y
rand(x) → x
sum1(nil) → 0
tests(0) → true
tests(s(x)) → and(test(rands(rand(0), nil)), x)
POL(+(x1, x2)) = x1 + x2
POL(0) = 0
POL(::(x1, x2)) = x1 + x2
POL(RANDS(x1, x2)) = x1 + x2
POL(and(x1, x2)) = x1 + x2
POL(done(x1)) = 2·x1
POL(eq(x1, x2)) = x1 + x2
POL(f(x1)) = x1
POL(g(x1)) = x1
POL(nil) = 0
POL(rand(x1)) = x1
POL(rands(x1, x2)) = x1 + 2·x2
POL(s(x1)) = x1
POL(sum1(x1)) = 2 + x1
POL(test(x1)) = 2·x1
POL(tests(x1)) = 2 + 2·x1
POL(true) = 0
RANDS(s(x), y) → RANDS(x, ::(rand(0), y))
rands(0, y) → done(y)
rands(s(x), y) → rands(x, ::(rand(0), y))
rand(x) → rand(s(x))
eq(x, x) → true
+(s(x), y) → s(+(x, y))
test(done(y)) → eq(f(y), g(y))
+(0, y) → y
rand(x) → x
+(0, y) → y
POL(+(x1, x2)) = 2 + x1 + x2
POL(0) = 0
POL(::(x1, x2)) = x1 + x2
POL(RANDS(x1, x2)) = x1 + x2
POL(done(x1)) = 2·x1
POL(eq(x1, x2)) = x1 + x2
POL(f(x1)) = x1
POL(g(x1)) = x1
POL(rand(x1)) = x1
POL(rands(x1, x2)) = x1 + 2·x2
POL(s(x1)) = x1
POL(test(x1)) = 2·x1
POL(true) = 0
RANDS(s(x), y) → RANDS(x, ::(rand(0), y))
rands(0, y) → done(y)
rands(s(x), y) → rands(x, ::(rand(0), y))
rand(x) → rand(s(x))
eq(x, x) → true
+(s(x), y) → s(+(x, y))
test(done(y)) → eq(f(y), g(y))
rand(x) → x
test(done(y)) → eq(f(y), g(y))
POL(+(x1, x2)) = x1 + x2
POL(0) = 0
POL(::(x1, x2)) = x1 + x2
POL(RANDS(x1, x2)) = x1 + x2
POL(done(x1)) = 2 + 2·x1
POL(eq(x1, x2)) = x1 + x2
POL(f(x1)) = x1
POL(g(x1)) = x1
POL(rand(x1)) = x1
POL(rands(x1, x2)) = 2 + x1 + 2·x2
POL(s(x1)) = x1
POL(test(x1)) = 2 + 2·x1
POL(true) = 0
RANDS(s(x), y) → RANDS(x, ::(rand(0), y))
rands(0, y) → done(y)
rands(s(x), y) → rands(x, ::(rand(0), y))
rand(x) → rand(s(x))
eq(x, x) → true
+(s(x), y) → s(+(x, y))
rand(x) → x
rands(0, y) → done(y)
eq(x, x) → true
POL(+(x1, x2)) = x1 + x2
POL(0) = 0
POL(::(x1, x2)) = x1 + x2
POL(RANDS(x1, x2)) = x1 + x2
POL(done(x1)) = x1
POL(eq(x1, x2)) = 2 + x1 + x2
POL(rand(x1)) = x1
POL(rands(x1, x2)) = 1 + x1 + 2·x2
POL(s(x1)) = x1
POL(true) = 1
RANDS(s(x), y) → RANDS(x, ::(rand(0), y))
rands(s(x), y) → rands(x, ::(rand(0), y))
rand(x) → rand(s(x))
+(s(x), y) → s(+(x, y))
rand(x) → x
RANDS(s(x0), ::(y_1, y_2)) → RANDS(x0, ::(rand(0), ::(y_1, y_2))) → RANDS(s(x0), ::(y_1, y_2)) → RANDS(x0, ::(rand(0), ::(y_1, y_2)))
RANDS(s(x0), ::(y_1, y_2)) → RANDS(x0, ::(rand(0), ::(y_1, y_2)))
rands(s(x), y) → rands(x, ::(rand(0), y))
rand(x) → rand(s(x))
+(s(x), y) → s(+(x, y))
rand(x) → x
RANDS(s(x0), ::(y_1, ::(y_2, y_3))) → RANDS(x0, ::(rand(0), ::(y_1, ::(y_2, y_3)))) → RANDS(s(x0), ::(y_1, ::(y_2, y_3))) → RANDS(x0, ::(rand(0), ::(y_1, ::(y_2, y_3))))
RANDS(s(x0), ::(y_1, ::(y_2, y_3))) → RANDS(x0, ::(rand(0), ::(y_1, ::(y_2, y_3))))
rands(s(x), y) → rands(x, ::(rand(0), y))
rand(x) → rand(s(x))
+(s(x), y) → s(+(x, y))
rand(x) → x
by considering the usable rules:
RANDS(s(x0), ::(y_1, ::(y_2, y_3))) → RANDS(x0, ::(rand(0), ::(y_1, ::(y_2, y_3))))
rand(x) → rand(s(x))
rand(x) → x
rands(s(x), y) → rands(x, ::(rand(0), y))
rand(x) → rand(s(x))
+(s(x), y) → s(+(x, y))
rand(x) → x