YES
0 RelTRS
↳1 RelTRStoRelADPProof (⇔, 0 ms)
↳2 RelADPP
↳3 RelADPDepGraphProof (⇔, 0 ms)
↳4 AND
↳5 RelADPP
↳6 RelADPCleverAfsProof (⇒, 51 ms)
↳7 QDP
↳8 MRRProof (⇔, 20 ms)
↳9 QDP
↳10 MRRProof (⇔, 0 ms)
↳11 QDP
↳12 QDPOrderProof (⇔, 12 ms)
↳13 QDP
↳14 PisEmptyProof (⇔, 0 ms)
↳15 YES
↳16 RelADPP
↳17 RelADPCleverAfsProof (⇒, 41 ms)
↳18 QDP
↳19 MRRProof (⇔, 20 ms)
↳20 QDP
↳21 QDPOrderProof (⇔, 0 ms)
↳22 QDP
↳23 PisEmptyProof (⇔, 0 ms)
↳24 YES
↳25 RelADPP
↳26 RelADPCleverAfsProof (⇒, 35 ms)
↳27 QDP
↳28 MRRProof (⇔, 18 ms)
↳29 QDP
↳30 QDPOrderProof (⇔, 0 ms)
↳31 QDP
↳32 PisEmptyProof (⇔, 0 ms)
↳33 YES
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
log(s(0)) → 0
log(s(s(x))) → s(log(s(quot(x, s(s(0))))))
rand(x) → rand(s(x))
rand(x) → x
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → PRED(minus(x, y))
minus(x, s(y)) → pred(MINUS(x, y))
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(QUOT(minus(x, y), s(y)))
quot(s(x), s(y)) → s(quot(MINUS(x, y), s(y)))
log(s(0)) → 0
log(s(s(x))) → s(LOG(s(quot(x, s(s(0))))))
log(s(s(x))) → s(log(s(QUOT(x, s(s(0))))))
rand(x) → RAND(s(x))
rand(x) → x
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
3 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 3 subproblems.
minus(x, s(y)) → pred(MINUS(x, y))
log(s(0)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(x, s(y)) → pred(minus(x, y))
log(s(s(x))) → s(log(s(quot(x, s(s(0))))))
minus(x, 0) → x
rand(x) → rand(s(x))
rand(x) → x
pred(s(x)) → x
quot(0, s(y)) → 0
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
MINUS_2 = 0
log_1 =
pred_1 =
0 =
minus_2 = 1
rand_1 =
quot_2 =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
MINUS(x1, x2) = x2
s(x1) = s(x1)
quot(x1, x2) = quot(x1, x2)
minus(x1, x2) = minus(x1)
pred(x1) = x1
0 = 0
Recursive path order with status [RPO].
Quasi-Precedence:
quot2 > s1 > [minus1, 0]
s1: [1]
quot2: [1,2]
minus1: multiset
0: multiset
MINUS(s0(y)) → MINUS(y)
log0(s0(00)) → 00
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
minus(x) → pred0(minus(x))
log0(s0(s0(x))) → s0(log0(s0(quot0(x, s0(s0(00))))))
minus(x) → x
rand0(x) → rand0(s0(x))
rand0(x) → x
pred0(s0(x)) → x
quot0(00, s0(y)) → 00
rand0(x) → x
POL(00) = 0
POL(MINUS(x1)) = x1
POL(log0(x1)) = 2·x1
POL(minus(x1)) = x1
POL(pred0(x1)) = x1
POL(quot0(x1, x2)) = x1 + 2·x2
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
MINUS(s0(y)) → MINUS(y)
log0(s0(00)) → 00
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
minus(x) → pred0(minus(x))
log0(s0(s0(x))) → s0(log0(s0(quot0(x, s0(s0(00))))))
minus(x) → x
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
quot0(00, s0(y)) → 00
log0(s0(00)) → 00
POL(00) = 0
POL(MINUS(x1)) = x1
POL(log0(x1)) = 1 + 2·x1
POL(minus(x1)) = x1
POL(pred0(x1)) = x1
POL(quot0(x1, x2)) = x1 + x2
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
MINUS(s0(y)) → MINUS(y)
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
minus(x) → pred0(minus(x))
log0(s0(s0(x))) → s0(log0(s0(quot0(x, s0(s0(00))))))
minus(x) → x
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
quot0(00, s0(y)) → 00
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS(s0(y)) → MINUS(y)
[s01, log01, rand0] > 00
s01: multiset
log01: multiset
00: multiset
rand0: []
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
minus(x) → pred0(minus(x))
log0(s0(s0(x))) → s0(log0(s0(quot0(x, s0(s0(00))))))
minus(x) → x
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
quot0(00, s0(y)) → 00
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
minus(x) → pred0(minus(x))
log0(s0(s0(x))) → s0(log0(s0(quot0(x, s0(s0(00))))))
minus(x) → x
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
quot0(00, s0(y)) → 00
quot(s(x), s(y)) → s(QUOT(minus(x, y), s(y)))
log(s(0)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(x, s(y)) → pred(minus(x, y))
log(s(s(x))) → s(log(s(quot(x, s(s(0))))))
minus(x, 0) → x
rand(x) → rand(s(x))
rand(x) → x
pred(s(x)) → x
quot(0, s(y)) → 0
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
QUOT_2 = 1
log_1 =
0 =
pred_1 =
minus_2 = 1
rand_1 =
quot_2 = 1
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
QUOT(x1, x2) = QUOT(x1)
s(x1) = s(x1)
minus(x1, x2) = x1
pred(x1) = x1
0 = 0
quot(x1, x2) = quot(x1)
Recursive path order with status [RPO].
Quasi-Precedence:
[QUOT1, s1, 0, quot1]
QUOT1: multiset
s1: multiset
0: multiset
quot1: multiset
QUOT(s0(x)) → QUOT(minus(x))
log0(s0(00)) → 00
quot(s0(x)) → s0(quot(minus(x)))
minus(x) → pred0(minus(x))
log0(s0(s0(x))) → s0(log0(s0(quot(x))))
minus(x) → x
rand0(x) → rand0(s0(x))
rand0(x) → x
pred0(s0(x)) → x
quot(00) → 00
log0(s0(00)) → 00
rand0(x) → x
POL(00) = 1
POL(QUOT(x1)) = x1
POL(log0(x1)) = 2 + x1
POL(minus(x1)) = x1
POL(pred0(x1)) = x1
POL(quot(x1)) = x1
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
QUOT(s0(x)) → QUOT(minus(x))
quot(s0(x)) → s0(quot(minus(x)))
minus(x) → pred0(minus(x))
log0(s0(s0(x))) → s0(log0(s0(quot(x))))
minus(x) → x
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
quot(00) → 00
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT(s0(x)) → QUOT(minus(x))
[QUOT1, s01, rand0]
QUOT1: multiset
s01: multiset
rand0: multiset
00: multiset
quot(s0(x)) → s0(quot(minus(x)))
minus(x) → pred0(minus(x))
log0(s0(s0(x))) → s0(log0(s0(quot(x))))
minus(x) → x
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
quot(00) → 00
quot(s0(x)) → s0(quot(minus(x)))
minus(x) → pred0(minus(x))
log0(s0(s0(x))) → s0(log0(s0(quot(x))))
minus(x) → x
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
quot(00) → 00
log(s(s(x))) → s(LOG(s(quot(x, s(s(0))))))
log(s(0)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(x, s(y)) → pred(minus(x, y))
log(s(s(x))) → s(log(s(quot(x, s(s(0))))))
minus(x, 0) → x
rand(x) → rand(s(x))
rand(x) → x
pred(s(x)) → x
quot(0, s(y)) → 0
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
log_1 =
0 =
pred_1 =
minus_2 = 1
rand_1 =
LOG_1 =
quot_2 = 1
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
LOG(x1) = LOG(x1)
s(x1) = s(x1)
quot(x1, x2) = x1
0 = 0
minus(x1, x2) = x1
pred(x1) = x1
Recursive path order with status [RPO].
Quasi-Precedence:
[LOG1, s1, 0]
LOG1: multiset
s1: multiset
0: multiset
LOG0(s0(s0(x))) → LOG0(s0(quot(x)))
log0(s0(00)) → 00
quot(s0(x)) → s0(quot(minus(x)))
minus(x) → pred0(minus(x))
log0(s0(s0(x))) → s0(log0(s0(quot(x))))
minus(x) → x
rand0(x) → rand0(s0(x))
rand0(x) → x
pred0(s0(x)) → x
quot(00) → 00
log0(s0(00)) → 00
rand0(x) → x
POL(00) = 1
POL(LOG0(x1)) = x1
POL(log0(x1)) = 2 + x1
POL(minus(x1)) = x1
POL(pred0(x1)) = x1
POL(quot(x1)) = x1
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
LOG0(s0(s0(x))) → LOG0(s0(quot(x)))
quot(s0(x)) → s0(quot(minus(x)))
minus(x) → pred0(minus(x))
log0(s0(s0(x))) → s0(log0(s0(quot(x))))
minus(x) → x
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
quot(00) → 00
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LOG0(s0(s0(x))) → LOG0(s0(quot(x)))
log01 > [LOG01, s01, rand0]
LOG01: multiset
s01: multiset
log01: multiset
rand0: []
00: multiset
quot(s0(x)) → s0(quot(minus(x)))
minus(x) → pred0(minus(x))
log0(s0(s0(x))) → s0(log0(s0(quot(x))))
minus(x) → x
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
quot(00) → 00
quot(s0(x)) → s0(quot(minus(x)))
minus(x) → pred0(minus(x))
log0(s0(s0(x))) → s0(log0(s0(quot(x))))
minus(x) → x
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
quot(00) → 00