YES
0 RelTRS
↳1 RelTRStoRelADPProof (⇔, 0 ms)
↳2 RelADPP
↳3 RelADPDepGraphProof (⇔, 0 ms)
↳4 AND
↳5 RelADPP
↳6 RelADPCleverAfsProof (⇒, 52 ms)
↳7 QDP
↳8 MRRProof (⇔, 0 ms)
↳9 QDP
↳10 MRRProof (⇔, 0 ms)
↳11 QDP
↳12 MRRProof (⇔, 0 ms)
↳13 QDP
↳14 MRRProof (⇔, 4 ms)
↳15 QDP
↳16 QDPOrderProof (⇔, 0 ms)
↳17 QDP
↳18 PisEmptyProof (⇔, 0 ms)
↳19 YES
↳20 RelADPP
↳21 RelADPCleverAfsProof (⇒, 60 ms)
↳22 QDP
↳23 MRRProof (⇔, 0 ms)
↳24 QDP
↳25 MRRProof (⇔, 0 ms)
↳26 QDP
↳27 QDPOrderProof (⇔, 0 ms)
↳28 QDP
↳29 PisEmptyProof (⇔, 0 ms)
↳30 YES
↳31 RelADPP
↳32 RelADPCleverAfsProof (⇒, 54 ms)
↳33 QDP
↳34 MRRProof (⇔, 0 ms)
↳35 QDP
↳36 MRRProof (⇔, 0 ms)
↳37 QDP
↳38 QDPOrderProof (⇔, 0 ms)
↳39 QDP
↳40 DependencyGraphProof (⇔, 0 ms)
↳41 TRUE
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)
rand(x) → rand(s(x))
rand(x) → x
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → LE(x, y)
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → PRED(minus(x, y))
minus(x, s(y)) → pred(MINUS(x, y))
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → IF_MOD(le(y, x), s(x), s(y))
mod(s(x), s(y)) → if_mod(LE(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → MOD(minus(x, y), s(y))
if_mod(true, s(x), s(y)) → mod(MINUS(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)
rand(x) → RAND(s(x))
rand(x) → x
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
3 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 3 subproblems.
minus(x, s(y)) → pred(MINUS(x, y))
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
if_mod(false, s(x), s(y)) → s(x)
rand(x) → rand(s(x))
pred(s(x)) → x
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
minus(x, s(y)) → pred(minus(x, y))
mod(0, y) → 0
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
le(0, y) → true
mod(s(x), 0) → 0
minus(x, 0) → x
rand(x) → x
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
MINUS_2 = 0
mod_2 =
if_mod_3 = 0
true =
pred_1 =
le_2 = 0, 1
0 =
minus_2 = 1
rand_1 =
false =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
MINUS(x1, x2) = MINUS(x2)
s(x1) = s(x1)
mod(x1, x2) = mod(x1, x2)
if_mod(x1, x2, x3) = if_mod(x2, x3)
le(x1, x2) = le
true = true
minus(x1, x2) = minus(x1)
pred(x1) = x1
0 = 0
false = false
Recursive path order with status [RPO].
Quasi-Precedence:
[le, false] > s1 > [mod2, ifmod2, minus1]
[le, false] > true > [mod2, ifmod2, minus1]
0 > true > [mod2, ifmod2, minus1]
MINUS1: multiset
s1: [1]
mod2: multiset
ifmod2: multiset
le: multiset
true: multiset
minus1: multiset
0: multiset
false: multiset
MINUS(s0(y)) → MINUS(y)
le → le
le → false0
if_mod(s0(x), s0(y)) → s0(x)
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod0(s0(x), s0(y)) → if_mod(s0(x), s0(y))
minus(x) → pred0(minus(x))
mod0(00, y) → 00
if_mod(s0(x), s0(y)) → mod0(minus(x), s0(y))
le → true0
mod0(s0(x), 00) → 00
minus(x) → x
rand0(x) → x
le → true0
rand0(x) → x
POL(00) = 0
POL(MINUS(x1)) = x1
POL(false0) = 2
POL(if_mod(x1, x2)) = 2·x1 + x2
POL(le) = 2
POL(minus(x1)) = x1
POL(mod0(x1, x2)) = 2·x1 + x2
POL(pred0(x1)) = x1
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
POL(true0) = 0
MINUS(s0(y)) → MINUS(y)
le → le
le → false0
if_mod(s0(x), s0(y)) → s0(x)
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod0(s0(x), s0(y)) → if_mod(s0(x), s0(y))
minus(x) → pred0(minus(x))
mod0(00, y) → 00
if_mod(s0(x), s0(y)) → mod0(minus(x), s0(y))
mod0(s0(x), 00) → 00
minus(x) → x
le → false0
POL(00) = 0
POL(MINUS(x1)) = x1
POL(false0) = 1
POL(if_mod(x1, x2)) = 2·x1 + x2
POL(le) = 2
POL(minus(x1)) = x1
POL(mod0(x1, x2)) = 2·x1 + x2
POL(pred0(x1)) = x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
MINUS(s0(y)) → MINUS(y)
le → le
if_mod(s0(x), s0(y)) → s0(x)
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod0(s0(x), s0(y)) → if_mod(s0(x), s0(y))
minus(x) → pred0(minus(x))
mod0(00, y) → 00
if_mod(s0(x), s0(y)) → mod0(minus(x), s0(y))
mod0(s0(x), 00) → 00
minus(x) → x
mod0(00, y) → 00
mod0(s0(x), 00) → 00
POL(00) = 1
POL(MINUS(x1)) = x1
POL(if_mod(x1, x2)) = 2·x1 + 2·x2
POL(le) = 0
POL(minus(x1)) = x1
POL(mod0(x1, x2)) = 2·x1 + 2·x2
POL(pred0(x1)) = x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
MINUS(s0(y)) → MINUS(y)
le → le
if_mod(s0(x), s0(y)) → s0(x)
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod0(s0(x), s0(y)) → if_mod(s0(x), s0(y))
minus(x) → pred0(minus(x))
if_mod(s0(x), s0(y)) → mod0(minus(x), s0(y))
minus(x) → x
if_mod(s0(x), s0(y)) → s0(x)
POL(MINUS(x1)) = x1
POL(if_mod(x1, x2)) = 2 + 2·x1 + 2·x2
POL(le) = 0
POL(minus(x1)) = x1
POL(mod0(x1, x2)) = 2 + 2·x1 + 2·x2
POL(pred0(x1)) = x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
MINUS(s0(y)) → MINUS(y)
le → le
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod0(s0(x), s0(y)) → if_mod(s0(x), s0(y))
minus(x) → pred0(minus(x))
if_mod(s0(x), s0(y)) → mod0(minus(x), s0(y))
minus(x) → x
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS(s0(y)) → MINUS(y)
[s01, minus1] > MINUS1
MINUS1: multiset
s01: multiset
le: multiset
rand0: []
minus1: multiset
le → le
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod0(s0(x), s0(y)) → if_mod(s0(x), s0(y))
minus(x) → pred0(minus(x))
if_mod(s0(x), s0(y)) → mod0(minus(x), s0(y))
minus(x) → x
le → le
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod0(s0(x), s0(y)) → if_mod(s0(x), s0(y))
minus(x) → pred0(minus(x))
if_mod(s0(x), s0(y)) → mod0(minus(x), s0(y))
minus(x) → x
le(s(x), s(y)) → LE(x, y)
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
minus(x, s(y)) → pred(minus(x, y))
le(s(x), 0) → false
mod(0, y) → 0
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)
le(0, y) → true
mod(s(x), 0) → 0
minus(x, 0) → x
rand(x) → rand(s(x))
rand(x) → x
pred(s(x)) → x
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
mod_2 = 1
if_mod_3 = 0, 2
true =
LE_2 = 0
le_2 = 0, 1
pred_1 =
0 =
minus_2 = 1
rand_1 =
false =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
LE(x1, x2) = x2
s(x1) = s(x1)
mod(x1, x2) = x1
if_mod(x1, x2, x3) = x2
le(x1, x2) = le
true = true
minus(x1, x2) = x1
pred(x1) = x1
0 = 0
false = false
Recursive path order with status [RPO].
Quasi-Precedence:
[le, true] > false > s1 > 0
s1: [1]
le: []
true: multiset
0: multiset
false: multiset
LE(s0(y)) → LE(y)
le → le
le → false0
if_mod(s0(x)) → s0(x)
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
mod(00) → 00
if_mod(s0(x)) → mod(minus(x))
le → true0
mod(s0(x)) → 00
minus(x) → x
rand0(x) → x
le → false0
if_mod(s0(x)) → s0(x)
mod(00) → 00
mod(s0(x)) → 00
rand0(x) → x
POL(00) = 0
POL(LE(x1)) = x1
POL(false0) = 0
POL(if_mod(x1)) = 2 + 2·x1
POL(le) = 2
POL(minus(x1)) = x1
POL(mod(x1)) = 2 + 2·x1
POL(pred0(x1)) = x1
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
POL(true0) = 2
LE(s0(y)) → LE(y)
le → le
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
if_mod(s0(x)) → mod(minus(x))
le → true0
minus(x) → x
le → true0
POL(LE(x1)) = x1
POL(if_mod(x1)) = 2 + x1
POL(le) = 2
POL(minus(x1)) = x1
POL(mod(x1)) = 2 + x1
POL(pred0(x1)) = x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
POL(true0) = 1
LE(s0(y)) → LE(y)
le → le
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
if_mod(s0(x)) → mod(minus(x))
minus(x) → x
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LE(s0(y)) → LE(y)
[s01, minus1]
s01: multiset
le: multiset
rand0: []
minus1: multiset
le → le
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
if_mod(s0(x)) → mod(minus(x))
minus(x) → x
le → le
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
if_mod(s0(x)) → mod(minus(x))
minus(x) → x
if_mod(true, s(x), s(y)) → MOD(minus(x, y), s(y))
mod(s(x), s(y)) → IF_MOD(le(y, x), s(x), s(y))
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
if_mod(false, s(x), s(y)) → s(x)
rand(x) → rand(s(x))
pred(s(x)) → x
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
minus(x, s(y)) → pred(minus(x, y))
mod(0, y) → 0
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
le(0, y) → true
mod(s(x), 0) → 0
minus(x, 0) → x
rand(x) → x
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
mod_2 = 1
if_mod_3 = 0, 2
true =
le_2 = 0, 1
0 =
pred_1 =
MOD_2 = 1
minus_2 = 1
IF_MOD_3 = 0, 2
rand_1 =
false =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
MOD(x1, x2) = MOD(x1)
s(x1) = s(x1)
IF_MOD(x1, x2, x3) = IF_MOD(x2)
le(x1, x2) = le
true = true
minus(x1, x2) = x1
pred(x1) = x1
0 = 0
false = false
if_mod(x1, x2, x3) = x2
mod(x1, x2) = x1
Recursive path order with status [RPO].
Quasi-Precedence:
le > [MOD1, s1, true] > IFMOD1 > 0
le > [MOD1, s1, true] > false > 0
MOD1: [1]
s1: [1]
IFMOD1: [1]
le: []
true: multiset
0: multiset
false: multiset
MOD(s0(x)) → IF_MOD(s0(x))
IF_MOD(s0(x)) → MOD(minus(x))
le → le
le → false0
if_mod(s0(x)) → s0(x)
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
mod(00) → 00
if_mod(s0(x)) → mod(minus(x))
le → true0
mod(s0(x)) → 00
minus(x) → x
rand0(x) → x
le → false0
if_mod(s0(x)) → s0(x)
mod(00) → 00
mod(s0(x)) → 00
rand0(x) → x
POL(00) = 0
POL(IF_MOD(x1)) = 2 + 2·x1
POL(MOD(x1)) = 2 + 2·x1
POL(false0) = 0
POL(if_mod(x1)) = 2 + 2·x1
POL(le) = 2
POL(minus(x1)) = x1
POL(mod(x1)) = 2 + 2·x1
POL(pred0(x1)) = x1
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
POL(true0) = 2
MOD(s0(x)) → IF_MOD(s0(x))
IF_MOD(s0(x)) → MOD(minus(x))
le → le
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
if_mod(s0(x)) → mod(minus(x))
le → true0
minus(x) → x
le → true0
POL(IF_MOD(x1)) = x1
POL(MOD(x1)) = x1
POL(if_mod(x1)) = x1
POL(le) = 2
POL(minus(x1)) = x1
POL(mod(x1)) = x1
POL(pred0(x1)) = x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
POL(true0) = 1
MOD(s0(x)) → IF_MOD(s0(x))
IF_MOD(s0(x)) → MOD(minus(x))
le → le
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
if_mod(s0(x)) → mod(minus(x))
minus(x) → x
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
IF_MOD(s0(x)) → MOD(minus(x))
POL( le ) = 0 |
POL( rand0(x1) ) = max{0, -2} |
POL( s0(x1) ) = 2x1 + 2 |
POL( pred0(x1) ) = max{0, x1 - 2} |
POL( mod(x1) ) = 2x1 + 2 |
POL( if_mod(x1) ) = 2x1 + 2 |
POL( minus(x1) ) = x1 + 1 |
POL( MOD(x1) ) = 2x1 + 2 |
POL( IF_MOD(x1) ) = 2x1 + 2 |
le → le
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
if_mod(s0(x)) → mod(minus(x))
minus(x) → x
MOD(s0(x)) → IF_MOD(s0(x))
le → le
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
if_mod(s0(x)) → mod(minus(x))
minus(x) → x