YES
0 RelTRS
↳1 RelTRStoRelADPProof (⇔, 0 ms)
↳2 RelADPP
↳3 RelADPDepGraphProof (⇔, 0 ms)
↳4 AND
↳5 RelADPP
↳6 RelADPCleverAfsProof (⇒, 29 ms)
↳7 QDP
↳8 MRRProof (⇔, 39 ms)
↳9 QDP
↳10 MRRProof (⇔, 0 ms)
↳11 QDP
↳12 QDPOrderProof (⇔, 0 ms)
↳13 QDP
↳14 PisEmptyProof (⇔, 0 ms)
↳15 YES
↳16 RelADPP
↳17 RelADPCleverAfsProof (⇒, 31 ms)
↳18 QDP
↳19 MRRProof (⇔, 38 ms)
↳20 QDP
↳21 MRRProof (⇔, 0 ms)
↳22 QDP
↳23 QDPOrderProof (⇔, 0 ms)
↳24 QDP
↳25 PisEmptyProof (⇔, 0 ms)
↳26 YES
↳27 RelADPP
↳28 RelADPCleverAfsProof (⇒, 41 ms)
↳29 QDP
↳30 MRRProof (⇔, 35 ms)
↳31 QDP
↳32 MRRProof (⇔, 0 ms)
↳33 QDP
↳34 PisEmptyProof (⇔, 0 ms)
↳35 YES
g(c(x, s(y))) → g(c(s(x), y))
f(c(s(x), y)) → f(c(x, s(y)))
f(f(x)) → f(d(f(x)))
f(x) → x
rand(x) → rand(s(x))
rand(x) → x
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
g(c(x, s(y))) → G(c(s(x), y))
f(c(s(x), y)) → F(c(x, s(y)))
f(f(x)) → F(d(f(x)))
f(f(x)) → f(d(F(x)))
f(x) → x
rand(x) → RAND(s(x))
rand(x) → x
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
3 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 3 subproblems.
g(c(x, s(y))) → G(c(s(x), y))
f(x) → x
f(f(x)) → f(d(f(x)))
rand(x) → rand(s(x))
f(c(s(x), y)) → f(c(x, s(y)))
rand(x) → x
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
c_2 = 0
G_1 =
d_1 =
f_1 =
rand_1 =
g_1 =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
G(x1) = x1
c(x1, x2) = c(x2)
s(x1) = s(x1)
Recursive path order with status [RPO].
Quasi-Precedence:
[c1, s1]
c1: [1]
s1: multiset
G0(c(s0(y))) → G0(c(y))
g0(c(s0(y))) → g0(c(y))
f0(x) → x
f0(f0(x)) → f0(d0(f0(x)))
rand0(x) → rand0(s0(x))
f0(c(y)) → f0(c(s0(y)))
rand0(x) → x
rand0(x) → x
POL(G0(x1)) = x1
POL(c(x1)) = x1
POL(d0(x1)) = x1
POL(f0(x1)) = 2·x1
POL(g0(x1)) = x1
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
G0(c(s0(y))) → G0(c(y))
g0(c(s0(y))) → g0(c(y))
f0(x) → x
f0(f0(x)) → f0(d0(f0(x)))
rand0(x) → rand0(s0(x))
f0(c(y)) → f0(c(s0(y)))
f0(x) → x
POL(G0(x1)) = x1
POL(c(x1)) = x1
POL(d0(x1)) = x1
POL(f0(x1)) = 1 + 2·x1
POL(g0(x1)) = x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
G0(c(s0(y))) → G0(c(y))
g0(c(s0(y))) → g0(c(y))
f0(f0(x)) → f0(d0(f0(x)))
rand0(x) → rand0(s0(x))
f0(c(y)) → f0(c(s0(y)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
G0(c(s0(y))) → G0(c(y))
[G01, c1, s01, f0] > d01
G01: multiset
c1: multiset
s01: multiset
f0: []
d01: multiset
rand0: multiset
g0(c(s0(y))) → g0(c(y))
f0(f0(x)) → f0(d0(f0(x)))
rand0(x) → rand0(s0(x))
f0(c(y)) → f0(c(s0(y)))
g0(c(s0(y))) → g0(c(y))
f0(f0(x)) → f0(d0(f0(x)))
rand0(x) → rand0(s0(x))
f0(c(y)) → f0(c(s0(y)))
f(c(s(x), y)) → F(c(x, s(y)))
g(c(x, s(y))) → g(c(s(x), y))
f(x) → x
f(f(x)) → f(d(f(x)))
rand(x) → rand(s(x))
rand(x) → x
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
c_2 = 1
d_1 =
f_1 =
F_1 =
rand_1 =
g_1 =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
F(x1) = x1
c(x1, x2) = c(x1)
s(x1) = s(x1)
Recursive path order with status [RPO].
Quasi-Precedence:
[c1, s1]
c1: [1]
s1: multiset
F0(c(s0(x))) → F0(c(x))
g0(c(x)) → g0(c(s0(x)))
f0(x) → x
f0(f0(x)) → f0(d0(f0(x)))
rand0(x) → rand0(s0(x))
f0(c(s0(x))) → f0(c(x))
rand0(x) → x
rand0(x) → x
POL(F0(x1)) = x1
POL(c(x1)) = 2·x1
POL(d0(x1)) = x1
POL(f0(x1)) = 2·x1
POL(g0(x1)) = x1
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
F0(c(s0(x))) → F0(c(x))
g0(c(x)) → g0(c(s0(x)))
f0(x) → x
f0(f0(x)) → f0(d0(f0(x)))
rand0(x) → rand0(s0(x))
f0(c(s0(x))) → f0(c(x))
f0(x) → x
POL(F0(x1)) = x1
POL(c(x1)) = 2·x1
POL(d0(x1)) = x1
POL(f0(x1)) = 1 + x1
POL(g0(x1)) = x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
F0(c(s0(x))) → F0(c(x))
g0(c(x)) → g0(c(s0(x)))
f0(f0(x)) → f0(d0(f0(x)))
rand0(x) → rand0(s0(x))
f0(c(s0(x))) → f0(c(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F0(c(s0(x))) → F0(c(x))
rand0 > [s01, f01] > [c1, g0]
c1: multiset
s01: [1]
g0: multiset
f01: [1]
rand0: multiset
g0(c(x)) → g0(c(s0(x)))
f0(f0(x)) → f0(d0(f0(x)))
rand0(x) → rand0(s0(x))
f0(c(s0(x))) → f0(c(x))
g0(c(x)) → g0(c(s0(x)))
f0(f0(x)) → f0(d0(f0(x)))
rand0(x) → rand0(s0(x))
f0(c(s0(x))) → f0(c(x))
f(f(x)) → f(d(F(x)))
g(c(x, s(y))) → g(c(s(x), y))
f(x) → x
f(f(x)) → f(d(f(x)))
rand(x) → rand(s(x))
f(c(s(x), y)) → f(c(x, s(y)))
rand(x) → x
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
c_2 =
d_1 =
f_1 =
F_1 =
rand_1 =
g_1 =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
F(x1) = x1
f(x1) = f(x1)
Recursive path order with status [RPO].
Quasi-Precedence:
trivial
f1: multiset
F0(f0(x)) → F0(x)
g0(c0(x, s0(y))) → g0(c0(s0(x), y))
f0(x) → x
f0(f0(x)) → f0(d0(f0(x)))
rand0(x) → rand0(s0(x))
f0(c0(s0(x), y)) → f0(c0(x, s0(y)))
rand0(x) → x
rand0(x) → x
POL(F0(x1)) = x1
POL(c0(x1, x2)) = 2·x1 + x2
POL(d0(x1)) = x1
POL(f0(x1)) = 2·x1
POL(g0(x1)) = x1
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
F0(f0(x)) → F0(x)
g0(c0(x, s0(y))) → g0(c0(s0(x), y))
f0(x) → x
f0(f0(x)) → f0(d0(f0(x)))
rand0(x) → rand0(s0(x))
f0(c0(s0(x), y)) → f0(c0(x, s0(y)))
F0(f0(x)) → F0(x)
f0(x) → x
POL(F0(x1)) = x1
POL(c0(x1, x2)) = 2·x1 + 2·x2
POL(d0(x1)) = x1
POL(f0(x1)) = 1 + 2·x1
POL(g0(x1)) = x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
g0(c0(x, s0(y))) → g0(c0(s0(x), y))
f0(f0(x)) → f0(d0(f0(x)))
rand0(x) → rand0(s0(x))
f0(c0(s0(x), y)) → f0(c0(x, s0(y)))