(0) Obligation:
Relative term rewrite system:
The relative TRS consists of the following R rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
The relative TRS consists of the following S rules:
rand(x) → rand(s(x))
rand(x) → x
 
(1) RelTRStoRelADPProof (EQUIVALENT transformation)
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
 
(2) Obligation:
Relative ADP Problem with
absolute ADPs:
minus(x, 0) → x
minus(s(x), s(y)) → MINUS(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(QUOT(minus(x, y), s(y)))
quot(s(x), s(y)) → s(quot(MINUS(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, APP(x, y))
reverse(nil) → nil
reverse(add(n, x)) → APP(reverse(x), add(n, nil))
reverse(add(n, x)) → app(REVERSE(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, SHUFFLE(reverse(x)))
shuffle(add(n, x)) → add(n, shuffle(REVERSE(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, CONCAT(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → LESS_LEAVES(concat(u, v), concat(w, z))
less_leaves(cons(u, v), cons(w, z)) → less_leaves(CONCAT(u, v), concat(w, z))
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), CONCAT(w, z))
and relative ADPs:
rand(x) → RAND(s(x))
rand(x) → x
 
(3) RelADPDepGraphProof (EQUIVALENT transformation)
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
  7 SCCs with nodes from P_abs,
  0 Lassos,
Result: This relative DT problem is equivalent to 7 subproblems.
 
(4) Complex Obligation (AND)
(5) Obligation:
Relative ADP Problem with
absolute ADPs:
minus(s(x), s(y)) → MINUS(x, y)
and relative ADPs:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
 
(6) RelADPCleverAfsProof (SOUND transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
Furthermore, We use an argument filter [LPAR04].
Filtering:MINUS_2 = 0
true = 
less_leaves_2 = 
add_2 = 
app_2 = 
concat_2 = 
leaf = 
shuffle_1 = 
rand_1 = 
quot_2 = 
nil = 
false = 
s_1 = 
reverse_1 = 
0 = 
minus_2 = 1
cons_2 = 
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
MINUS(x1, x2)  =  MINUS(x2)
s(x1)  =  s(x1)
quot(x1, x2)  =  quot(x1, x2)
minus(x1, x2)  =  minus(x1)
0  =  0
Recursive path order with status [RPO].
Quasi-Precedence: 
quot2 > [MINUS1, s1, 0] > minus1
Status: 
MINUS1: multiset
s1: multiset
quot2: [2,1]
minus1: multiset
0: multiset
 
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s0(y)) → MINUS(y)
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
concat0(leaf0, y) → y
concat0(cons0(u, v), y) → cons0(u, concat0(v, y))
rand0(x) → rand0(s0(x))
shuffle0(nil0) → nil0
shuffle0(add0(n, x)) → add0(n, shuffle0(reverse0(x)))
quot0(00, s0(y)) → 00
reverse0(nil0) → nil0
less_leaves0(x, leaf0) → false0
app0(add0(n, x), y) → add0(n, app0(x, y))
less_leaves0(leaf0, cons0(w, z)) → true0
app0(nil0, y) → y
reverse0(add0(n, x)) → app0(reverse0(x), add0(n, nil0))
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves0(cons0(u, v), cons0(w, z)) → less_leaves0(concat0(u, v), concat0(w, z))
rand0(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(8) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
concat0(leaf0, y) → y
concat0(cons0(u, v), y) → cons0(u, concat0(v, y))
quot0(00, s0(y)) → 00
less_leaves0(leaf0, cons0(w, z)) → true0
less_leaves0(cons0(u, v), cons0(w, z)) → less_leaves0(concat0(u, v), concat0(w, z))
rand0(x) → x
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0   
POL(MINUS(x1)) = x1   
POL(add0(x1, x2)) = x1 + x2   
POL(app0(x1, x2)) = x1 + x2   
POL(concat0(x1, x2)) = 2·x1 + x2   
POL(cons0(x1, x2)) = 2 + 2·x1 + x2   
POL(false0) = 2   
POL(leaf0) = 1   
POL(less_leaves0(x1, x2)) = 1 + 2·x1 + x2   
POL(minus(x1)) = x1   
POL(nil0) = 0   
POL(quot0(x1, x2)) = 1 + x1 + x2   
POL(rand0(x1)) = 2 + x1   
POL(reverse0(x1)) = x1   
POL(s0(x1)) = x1   
POL(shuffle0(x1)) = x1   
POL(true0) = 0   
 
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s0(y)) → MINUS(y)
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
rand0(x) → rand0(s0(x))
shuffle0(nil0) → nil0
shuffle0(add0(n, x)) → add0(n, shuffle0(reverse0(x)))
reverse0(nil0) → nil0
less_leaves0(x, leaf0) → false0
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
reverse0(add0(n, x)) → app0(reverse0(x), add0(n, nil0))
minus(s0(x)) → minus(x)
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(10) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
reverse0(nil0) → nil0
less_leaves0(x, leaf0) → false0
Used ordering: Polynomial interpretation [POLO]:
POL(MINUS(x1)) = x1   
POL(add0(x1, x2)) = 2 + x1 + x2   
POL(app0(x1, x2)) = x1 + x2   
POL(false0) = 0   
POL(leaf0) = 0   
POL(less_leaves0(x1, x2)) = 1 + x1 + x2   
POL(minus(x1)) = x1   
POL(nil0) = 0   
POL(quot0(x1, x2)) = x1 + x2   
POL(rand0(x1)) = x1   
POL(reverse0(x1)) = 1 + x1   
POL(s0(x1)) = x1   
POL(shuffle0(x1)) = 2·x1   
 
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s0(y)) → MINUS(y)
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
rand0(x) → rand0(s0(x))
shuffle0(nil0) → nil0
shuffle0(add0(n, x)) → add0(n, shuffle0(reverse0(x)))
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
reverse0(add0(n, x)) → app0(reverse0(x), add0(n, nil0))
minus(s0(x)) → minus(x)
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(12) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
shuffle0(nil0) → nil0
Used ordering: Polynomial interpretation [POLO]:
POL(MINUS(x1)) = 2·x1   
POL(add0(x1, x2)) = 2 + x1 + x2   
POL(app0(x1, x2)) = x1 + x2   
POL(minus(x1)) = x1   
POL(nil0) = 0   
POL(quot0(x1, x2)) = x1 + x2   
POL(rand0(x1)) = x1   
POL(reverse0(x1)) = 1 + x1   
POL(s0(x1)) = x1   
POL(shuffle0(x1)) = 2 + 2·x1   
 
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s0(y)) → MINUS(y)
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
rand0(x) → rand0(s0(x))
shuffle0(add0(n, x)) → add0(n, shuffle0(reverse0(x)))
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
reverse0(add0(n, x)) → app0(reverse0(x), add0(n, nil0))
minus(s0(x)) → minus(x)
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(14) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
shuffle0(add0(n, x)) → add0(n, shuffle0(reverse0(x)))
Used ordering: Polynomial interpretation [POLO]:
POL(MINUS(x1)) = x1   
POL(add0(x1, x2)) = 1 + x1 + x2   
POL(app0(x1, x2)) = x1 + x2   
POL(minus(x1)) = x1   
POL(nil0) = 0   
POL(quot0(x1, x2)) = x1 + x2   
POL(rand0(x1)) = x1   
POL(reverse0(x1)) = x1   
POL(s0(x1)) = x1   
POL(shuffle0(x1)) = 2·x1   
 
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s0(y)) → MINUS(y)
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
rand0(x) → rand0(s0(x))
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
reverse0(add0(n, x)) → app0(reverse0(x), add0(n, nil0))
minus(s0(x)) → minus(x)
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(16) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
reverse0(add0(n, x)) → app0(reverse0(x), add0(n, nil0))
Used ordering: Polynomial interpretation [POLO]:
POL(MINUS(x1)) = 2·x1   
POL(add0(x1, x2)) = 2 + x1 + x2   
POL(app0(x1, x2)) = x1 + x2   
POL(minus(x1)) = x1   
POL(nil0) = 0   
POL(quot0(x1, x2)) = x1 + x2   
POL(rand0(x1)) = x1   
POL(reverse0(x1)) = 2 + 2·x1   
POL(s0(x1)) = x1   
 
(17) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s0(y)) → MINUS(y)
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
rand0(x) → rand0(s0(x))
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
minus(s0(x)) → minus(x)
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(18) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
app0(nil0, y) → y
Used ordering: Polynomial interpretation [POLO]:
POL(MINUS(x1)) = x1   
POL(add0(x1, x2)) = x1 + x2   
POL(app0(x1, x2)) = 2·x1 + x2   
POL(minus(x1)) = x1   
POL(nil0) = 2   
POL(quot0(x1, x2)) = x1 + x2   
POL(rand0(x1)) = x1   
POL(s0(x1)) = x1   
 
(19) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s0(y)) → MINUS(y)
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
rand0(x) → rand0(s0(x))
app0(add0(n, x), y) → add0(n, app0(x, y))
minus(s0(x)) → minus(x)
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(20) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
app0(add0(n, x), y) → add0(n, app0(x, y))
Used ordering: Polynomial interpretation [POLO]:
POL(MINUS(x1)) = x1   
POL(add0(x1, x2)) = 2 + x1 + x2   
POL(app0(x1, x2)) = 2 + 2·x1 + x2   
POL(minus(x1)) = x1   
POL(quot0(x1, x2)) = x1 + x2   
POL(rand0(x1)) = x1   
POL(s0(x1)) = x1   
 
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS(s0(y)) → MINUS(y)
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
rand0(x) → rand0(s0(x))
minus(s0(x)) → minus(x)
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(22) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MINUS(s0(y)) → MINUS(y)
The remaining pairs can at least be oriented weakly.
Used ordering:  Polynomial Order [NEGPOLO,POLO] with Interpretation:
| POL( quot0(x1, x2) ) = 2x1 | 
| POL( rand0(x1) ) = max{0, -2} | 
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
rand0(x) → rand0(s0(x))
minus(s0(x)) → minus(x)
minus(x) → x
 
(23) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
rand0(x) → rand0(s0(x))
minus(s0(x)) → minus(x)
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(24) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(25) YES
(26) Obligation:
Relative ADP Problem with
absolute ADPs:
concat(cons(u, v), y) → cons(u, CONCAT(v, y))
and relative ADPs:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
 
(27) RelADPCleverAfsProof (SOUND transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
Furthermore, We use an argument filter [LPAR04].
Filtering:true = 
CONCAT_2 = 
less_leaves_2 = 
add_2 = 
app_2 = 
concat_2 = 
leaf = 
shuffle_1 = 
rand_1 = 
quot_2 = 0, 1
nil = 
false = 
s_1 = 
reverse_1 = 
0 = 
minus_2 = 1
cons_2 = 
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
CONCAT(x1, x2)  =  CONCAT(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
quot(x1, x2)  =  quot
s(x1)  =  x1
minus(x1, x2)  =  x1
0  =  0
Recursive path order with status [RPO].
Quasi-Precedence: 
cons2 > CONCAT2
[quot, 0]
Status: 
CONCAT2: multiset
cons2: multiset
quot: []
0: multiset
 
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONCAT0(cons0(u, v), y) → CONCAT0(v, y)
The TRS R consists of the following rules:
quot → s0(quot)
concat0(leaf0, y) → y
concat0(cons0(u, v), y) → cons0(u, concat0(v, y))
rand0(x) → rand0(s0(x))
shuffle0(nil0) → nil0
shuffle0(add0(n, x)) → add0(n, shuffle0(reverse0(x)))
quot → 00
reverse0(nil0) → nil0
less_leaves0(x, leaf0) → false0
app0(add0(n, x), y) → add0(n, app0(x, y))
less_leaves0(leaf0, cons0(w, z)) → true0
app0(nil0, y) → y
reverse0(add0(n, x)) → app0(reverse0(x), add0(n, nil0))
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves0(cons0(u, v), cons0(w, z)) → less_leaves0(concat0(u, v), concat0(w, z))
rand0(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(29) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
CONCAT0(cons0(u, v), y) → CONCAT0(v, y)
Strictly oriented rules of the TRS R:
concat0(cons0(u, v), y) → cons0(u, concat0(v, y))
less_leaves0(leaf0, cons0(w, z)) → true0
minus(x) → x
less_leaves0(cons0(u, v), cons0(w, z)) → less_leaves0(concat0(u, v), concat0(w, z))
rand0(x) → x
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0   
POL(CONCAT0(x1, x2)) = x1 + x2   
POL(add0(x1, x2)) = x1 + x2   
POL(app0(x1, x2)) = x1 + x2   
POL(concat0(x1, x2)) = 2·x1 + x2   
POL(cons0(x1, x2)) = 2 + 2·x1 + x2   
POL(false0) = 0   
POL(leaf0) = 0   
POL(less_leaves0(x1, x2)) = 2·x1 + x2   
POL(minus(x1)) = 2 + x1   
POL(nil0) = 0   
POL(quot) = 0   
POL(rand0(x1)) = 2 + x1   
POL(reverse0(x1)) = x1   
POL(s0(x1)) = x1   
POL(shuffle0(x1)) = x1   
POL(true0) = 0   
 
(30) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
quot → s0(quot)
concat0(leaf0, y) → y
rand0(x) → rand0(s0(x))
shuffle0(nil0) → nil0
shuffle0(add0(n, x)) → add0(n, shuffle0(reverse0(x)))
quot → 00
reverse0(nil0) → nil0
less_leaves0(x, leaf0) → false0
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
reverse0(add0(n, x)) → app0(reverse0(x), add0(n, nil0))
minus(s0(x)) → minus(x)
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(31) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(32) YES
(33) Obligation:
Relative ADP Problem with
absolute ADPs:
less_leaves(cons(u, v), cons(w, z)) → LESS_LEAVES(concat(u, v), concat(w, z))
and relative ADPs:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
 
(34) RelADPDerelatifyingProof (EQUIVALENT transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
 
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LESS_LEAVES(cons(u, v), cons(w, z)) → LESS_LEAVES(concat(u, v), concat(w, z))
The TRS R consists of the following rules:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(36) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
LESS_LEAVES(cons(u, v), cons(w, z)) → LESS_LEAVES(concat(u, v), concat(w, z))
The remaining pairs can at least be oriented weakly.
Used ordering:  Polynomial Order [NEGPOLO,POLO] with Interpretation:
| POL( quot(x1, x2) ) = x1 + x2 + 1 | 
| POL( minus(x1, x2) ) = x1 | 
| POL( concat(x1, x2) ) = 2x1 + x2 + 1 | 
| POL( cons(x1, x2) ) = 2x1 + x2 + 2 | 
| POL( reverse(x1) ) = 2x1 + 2 | 
| POL( less_leaves(x1, x2) ) = 2x1 + x2 + 1 | 
| POL( app(x1, x2) ) = 2x2 + 2 | 
| POL( LESS_LEAVES(x1, x2) ) = 2x1 + 2x2 + 2 | 
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
 
(37) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(38) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(39) YES
(40) Obligation:
Relative ADP Problem with
absolute ADPs:
app(add(n, x), y) → add(n, APP(x, y))
and relative ADPs:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
 
(41) RelADPCleverAfsProof (SOUND transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
Furthermore, We use an argument filter [LPAR04].
Filtering:true = 
less_leaves_2 = 
app_2 = 
add_2 = 
concat_2 = 
leaf = 
shuffle_1 = 
rand_1 = 
APP_2 = 
quot_2 = 0, 1
nil = 
false = 
s_1 = 
reverse_1 = 
0 = 
minus_2 = 1
cons_2 = 
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
APP(x1, x2)  =  APP(x1, x2)
add(x1, x2)  =  add(x1, x2)
quot(x1, x2)  =  quot
s(x1)  =  x1
minus(x1, x2)  =  x1
0  =  0
Recursive path order with status [RPO].
Quasi-Precedence: 
add2 > APP2
[quot, 0]
Status: 
APP2: [2,1]
add2: multiset
quot: []
0: multiset
 
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP0(add0(n, x), y) → APP0(x, y)
The TRS R consists of the following rules:
quot → s0(quot)
concat0(leaf0, y) → y
concat0(cons0(u, v), y) → cons0(u, concat0(v, y))
rand0(x) → rand0(s0(x))
shuffle0(nil0) → nil0
shuffle0(add0(n, x)) → add0(n, shuffle0(reverse0(x)))
quot → 00
reverse0(nil0) → nil0
less_leaves0(x, leaf0) → false0
app0(add0(n, x), y) → add0(n, app0(x, y))
less_leaves0(leaf0, cons0(w, z)) → true0
app0(nil0, y) → y
reverse0(add0(n, x)) → app0(reverse0(x), add0(n, nil0))
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves0(cons0(u, v), cons0(w, z)) → less_leaves0(concat0(u, v), concat0(w, z))
rand0(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(43) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
concat0(cons0(u, v), y) → cons0(u, concat0(v, y))
less_leaves0(leaf0, cons0(w, z)) → true0
minus(x) → x
less_leaves0(cons0(u, v), cons0(w, z)) → less_leaves0(concat0(u, v), concat0(w, z))
rand0(x) → x
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0   
POL(APP0(x1, x2)) = x1 + x2   
POL(add0(x1, x2)) = x1 + x2   
POL(app0(x1, x2)) = x1 + x2   
POL(concat0(x1, x2)) = 2·x1 + x2   
POL(cons0(x1, x2)) = 2 + 2·x1 + x2   
POL(false0) = 0   
POL(leaf0) = 0   
POL(less_leaves0(x1, x2)) = 2·x1 + x2   
POL(minus(x1)) = 2 + x1   
POL(nil0) = 0   
POL(quot) = 0   
POL(rand0(x1)) = 2 + x1   
POL(reverse0(x1)) = x1   
POL(s0(x1)) = x1   
POL(shuffle0(x1)) = x1   
POL(true0) = 0   
 
(44) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP0(add0(n, x), y) → APP0(x, y)
The TRS R consists of the following rules:
quot → s0(quot)
concat0(leaf0, y) → y
rand0(x) → rand0(s0(x))
shuffle0(nil0) → nil0
shuffle0(add0(n, x)) → add0(n, shuffle0(reverse0(x)))
quot → 00
reverse0(nil0) → nil0
less_leaves0(x, leaf0) → false0
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
reverse0(add0(n, x)) → app0(reverse0(x), add0(n, nil0))
minus(s0(x)) → minus(x)
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(45) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
concat0(leaf0, y) → y
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0   
POL(APP0(x1, x2)) = 2·x1 + x2   
POL(add0(x1, x2)) = x1 + x2   
POL(app0(x1, x2)) = x1 + x2   
POL(concat0(x1, x2)) = 2 + x1 + x2   
POL(false0) = 2   
POL(leaf0) = 1   
POL(less_leaves0(x1, x2)) = x1 + 2·x2   
POL(minus(x1)) = x1   
POL(nil0) = 0   
POL(quot) = 0   
POL(rand0(x1)) = x1   
POL(reverse0(x1)) = x1   
POL(s0(x1)) = x1   
POL(shuffle0(x1)) = 2·x1   
 
(46) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP0(add0(n, x), y) → APP0(x, y)
The TRS R consists of the following rules:
quot → s0(quot)
rand0(x) → rand0(s0(x))
shuffle0(nil0) → nil0
shuffle0(add0(n, x)) → add0(n, shuffle0(reverse0(x)))
quot → 00
reverse0(nil0) → nil0
less_leaves0(x, leaf0) → false0
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
reverse0(add0(n, x)) → app0(reverse0(x), add0(n, nil0))
minus(s0(x)) → minus(x)
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(47) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
quot → 00
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 1   
POL(APP0(x1, x2)) = 2·x1 + x2   
POL(add0(x1, x2)) = x1 + x2   
POL(app0(x1, x2)) = x1 + x2   
POL(false0) = 1   
POL(leaf0) = 0   
POL(less_leaves0(x1, x2)) = 1 + x1 + x2   
POL(minus(x1)) = x1   
POL(nil0) = 0   
POL(quot) = 2   
POL(rand0(x1)) = x1   
POL(reverse0(x1)) = x1   
POL(s0(x1)) = x1   
POL(shuffle0(x1)) = 2·x1   
 
(48) Obligation:
Q DP problem:
The TRS P consists of the following rules:
APP0(add0(n, x), y) → APP0(x, y)
The TRS R consists of the following rules:
quot → s0(quot)
rand0(x) → rand0(s0(x))
shuffle0(nil0) → nil0
shuffle0(add0(n, x)) → add0(n, shuffle0(reverse0(x)))
reverse0(nil0) → nil0
less_leaves0(x, leaf0) → false0
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
reverse0(add0(n, x)) → app0(reverse0(x), add0(n, nil0))
minus(s0(x)) → minus(x)
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(49) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
APP0(add0(n, x), y) → APP0(x, y)
Strictly oriented rules of the TRS R:
shuffle0(nil0) → nil0
shuffle0(add0(n, x)) → add0(n, shuffle0(reverse0(x)))
less_leaves0(x, leaf0) → false0
Used ordering: Polynomial interpretation [POLO]:
POL(APP0(x1, x2)) = x1 + x2   
POL(add0(x1, x2)) = 1 + x1 + x2   
POL(app0(x1, x2)) = x1 + x2   
POL(false0) = 1   
POL(leaf0) = 2   
POL(less_leaves0(x1, x2)) = 2 + x1 + 2·x2   
POL(minus(x1)) = x1   
POL(nil0) = 0   
POL(quot) = 0   
POL(rand0(x1)) = x1   
POL(reverse0(x1)) = x1   
POL(s0(x1)) = x1   
POL(shuffle0(x1)) = 2 + 2·x1   
 
(50) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
quot → s0(quot)
rand0(x) → rand0(s0(x))
reverse0(nil0) → nil0
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
reverse0(add0(n, x)) → app0(reverse0(x), add0(n, nil0))
minus(s0(x)) → minus(x)
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(51) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(52) YES
(53) Obligation:
Relative ADP Problem with
absolute ADPs:
reverse(add(n, x)) → app(REVERSE(x), add(n, nil))
and relative ADPs:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
 
(54) RelADPCleverAfsProof (SOUND transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
Furthermore, We use an argument filter [LPAR04].
Filtering:true = 
REVERSE_1 = 
less_leaves_2 = 
add_2 = 0
app_2 = 
concat_2 = 
leaf = 
shuffle_1 = 
rand_1 = 
nil = 
quot_2 = 0, 1
false = 
s_1 = 
reverse_1 = 
0 = 
minus_2 = 1
cons_2 = 
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
REVERSE(x1)  =  x1
add(x1, x2)  =  add(x2)
quot(x1, x2)  =  quot
s(x1)  =  x1
minus(x1, x2)  =  x1
0  =  0
Recursive path order with status [RPO].
Quasi-Precedence: 
[quot, 0]
Status: 
add1: multiset
quot: []
0: multiset
 
(55) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REVERSE0(add(x)) → REVERSE0(x)
The TRS R consists of the following rules:
quot → s0(quot)
concat0(leaf0, y) → y
concat0(cons0(u, v), y) → cons0(u, concat0(v, y))
rand0(x) → rand0(s0(x))
shuffle0(nil0) → nil0
shuffle0(add(x)) → add(shuffle0(reverse0(x)))
quot → 00
reverse0(nil0) → nil0
less_leaves0(x, leaf0) → false0
app0(add(x), y) → add(app0(x, y))
less_leaves0(leaf0, cons0(w, z)) → true0
app0(nil0, y) → y
reverse0(add(x)) → app0(reverse0(x), add(nil0))
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves0(cons0(u, v), cons0(w, z)) → less_leaves0(concat0(u, v), concat0(w, z))
rand0(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(56) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
concat0(cons0(u, v), y) → cons0(u, concat0(v, y))
less_leaves0(x, leaf0) → false0
less_leaves0(leaf0, cons0(w, z)) → true0
minus(x) → x
less_leaves0(cons0(u, v), cons0(w, z)) → less_leaves0(concat0(u, v), concat0(w, z))
rand0(x) → x
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0   
POL(REVERSE0(x1)) = x1   
POL(add(x1)) = x1   
POL(app0(x1, x2)) = x1 + x2   
POL(concat0(x1, x2)) = 2·x1 + x2   
POL(cons0(x1, x2)) = 2 + 2·x1 + x2   
POL(false0) = 0   
POL(leaf0) = 0   
POL(less_leaves0(x1, x2)) = 1 + 2·x1 + x2   
POL(minus(x1)) = 2 + 2·x1   
POL(nil0) = 0   
POL(quot) = 0   
POL(rand0(x1)) = 2 + x1   
POL(reverse0(x1)) = x1   
POL(s0(x1)) = x1   
POL(shuffle0(x1)) = x1   
POL(true0) = 2   
 
(57) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REVERSE0(add(x)) → REVERSE0(x)
The TRS R consists of the following rules:
quot → s0(quot)
concat0(leaf0, y) → y
rand0(x) → rand0(s0(x))
shuffle0(nil0) → nil0
shuffle0(add(x)) → add(shuffle0(reverse0(x)))
quot → 00
reverse0(nil0) → nil0
app0(add(x), y) → add(app0(x, y))
app0(nil0, y) → y
reverse0(add(x)) → app0(reverse0(x), add(nil0))
minus(s0(x)) → minus(x)
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(58) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
concat0(leaf0, y) → y
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0   
POL(REVERSE0(x1)) = x1   
POL(add(x1)) = x1   
POL(app0(x1, x2)) = x1 + x2   
POL(concat0(x1, x2)) = 2 + 2·x1 + x2   
POL(leaf0) = 0   
POL(minus(x1)) = x1   
POL(nil0) = 0   
POL(quot) = 0   
POL(rand0(x1)) = x1   
POL(reverse0(x1)) = x1   
POL(s0(x1)) = x1   
POL(shuffle0(x1)) = x1   
 
(59) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REVERSE0(add(x)) → REVERSE0(x)
The TRS R consists of the following rules:
quot → s0(quot)
rand0(x) → rand0(s0(x))
shuffle0(nil0) → nil0
shuffle0(add(x)) → add(shuffle0(reverse0(x)))
quot → 00
reverse0(nil0) → nil0
app0(add(x), y) → add(app0(x, y))
app0(nil0, y) → y
reverse0(add(x)) → app0(reverse0(x), add(nil0))
minus(s0(x)) → minus(x)
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(60) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
quot → 00
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 1   
POL(REVERSE0(x1)) = 2·x1   
POL(add(x1)) = x1   
POL(app0(x1, x2)) = x1 + 2·x2   
POL(minus(x1)) = x1   
POL(nil0) = 0   
POL(quot) = 2   
POL(rand0(x1)) = x1   
POL(reverse0(x1)) = x1   
POL(s0(x1)) = x1   
POL(shuffle0(x1)) = 2·x1   
 
(61) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REVERSE0(add(x)) → REVERSE0(x)
The TRS R consists of the following rules:
quot → s0(quot)
rand0(x) → rand0(s0(x))
shuffle0(nil0) → nil0
shuffle0(add(x)) → add(shuffle0(reverse0(x)))
reverse0(nil0) → nil0
app0(add(x), y) → add(app0(x, y))
app0(nil0, y) → y
reverse0(add(x)) → app0(reverse0(x), add(nil0))
minus(s0(x)) → minus(x)
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(62) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
shuffle0(nil0) → nil0
Used ordering: Polynomial interpretation [POLO]:
POL(REVERSE0(x1)) = 2·x1   
POL(add(x1)) = x1   
POL(app0(x1, x2)) = x1 + x2   
POL(minus(x1)) = x1   
POL(nil0) = 0   
POL(quot) = 0   
POL(rand0(x1)) = x1   
POL(reverse0(x1)) = x1   
POL(s0(x1)) = x1   
POL(shuffle0(x1)) = 2 + 2·x1   
 
(63) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REVERSE0(add(x)) → REVERSE0(x)
The TRS R consists of the following rules:
quot → s0(quot)
rand0(x) → rand0(s0(x))
shuffle0(add(x)) → add(shuffle0(reverse0(x)))
reverse0(nil0) → nil0
app0(add(x), y) → add(app0(x, y))
app0(nil0, y) → y
reverse0(add(x)) → app0(reverse0(x), add(nil0))
minus(s0(x)) → minus(x)
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(64) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
REVERSE0(add(x)) → REVERSE0(x)
Strictly oriented rules of the TRS R:
reverse0(nil0) → nil0
Used ordering: Polynomial interpretation [POLO]:
POL(REVERSE0(x1)) = x1   
POL(add(x1)) = 2 + x1   
POL(app0(x1, x2)) = x1 + x2   
POL(minus(x1)) = x1   
POL(nil0) = 0   
POL(quot) = 0   
POL(rand0(x1)) = x1   
POL(reverse0(x1)) = 1 + x1   
POL(s0(x1)) = x1   
POL(shuffle0(x1)) = 2 + 2·x1   
 
(65) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
quot → s0(quot)
rand0(x) → rand0(s0(x))
shuffle0(add(x)) → add(shuffle0(reverse0(x)))
app0(add(x), y) → add(app0(x, y))
app0(nil0, y) → y
reverse0(add(x)) → app0(reverse0(x), add(nil0))
minus(s0(x)) → minus(x)
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(66) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(67) YES
(68) Obligation:
Relative ADP Problem with
absolute ADPs:
shuffle(add(n, x)) → add(n, SHUFFLE(reverse(x)))
and relative ADPs:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
 
(69) RelADPDerelatifyingProof (EQUIVALENT transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
 
(70) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SHUFFLE(add(n, x)) → SHUFFLE(reverse(x))
The TRS R consists of the following rules:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(71) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
SHUFFLE(add(n, x)) → SHUFFLE(reverse(x))
The remaining pairs can at least be oriented weakly.
Used ordering:  Polynomial Order [NEGPOLO,POLO] with Interpretation:
| POL( minus(x1, x2) ) = 2x1 + 2x2 | 
| POL( concat(x1, x2) ) = x1 + x2 + 1 | 
| POL( cons(x1, x2) ) = x1 + x2 + 2 | 
| POL( shuffle(x1) ) = x1 + 1 | 
| POL( add(x1, x2) ) = x2 + 1 | 
| POL( less_leaves(x1, x2) ) = 2x1 + x2 + 1 | 
| POL( app(x1, x2) ) = x1 + x2 | 
| POL( SHUFFLE(x1) ) = x1 + 2 | 
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
 
(72) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(73) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(74) YES
(75) Obligation:
Relative ADP Problem with
absolute ADPs:
quot(s(x), s(y)) → s(QUOT(minus(x, y), s(y)))
and relative ADPs:
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
rand(x) → rand(s(x))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
quot(0, s(y)) → 0
reverse(nil) → nil
less_leaves(x, leaf) → false
app(add(n, x), y) → add(n, app(x, y))
less_leaves(leaf, cons(w, z)) → true
app(nil, y) → y
reverse(add(n, x)) → app(reverse(x), add(n, nil))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
rand(x) → x
 
(76) RelADPCleverAfsProof (SOUND transformation)
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
Furthermore, We use an argument filter [LPAR04].
Filtering:true = 
QUOT_2 = 1
less_leaves_2 = 
add_2 = 
app_2 = 
concat_2 = 
leaf = 
shuffle_1 = 
rand_1 = 
quot_2 = 
nil = 
false = 
s_1 = 
reverse_1 = 
0 = 
minus_2 = 1
cons_2 = 
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
QUOT(x1, x2)  =  x1
s(x1)  =  s(x1)
minus(x1, x2)  =  x1
0  =  0
quot(x1, x2)  =  quot(x1, x2)
Recursive path order with status [RPO].
Quasi-Precedence: 
quot2 > 0 > s1
Status: 
s1: multiset
0: multiset
quot2: [2,1]
 
(77) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOT(s0(x)) → QUOT(minus(x))
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
concat0(leaf0, y) → y
concat0(cons0(u, v), y) → cons0(u, concat0(v, y))
rand0(x) → rand0(s0(x))
shuffle0(nil0) → nil0
shuffle0(add0(n, x)) → add0(n, shuffle0(reverse0(x)))
quot0(00, s0(y)) → 00
reverse0(nil0) → nil0
less_leaves0(x, leaf0) → false0
app0(add0(n, x), y) → add0(n, app0(x, y))
less_leaves0(leaf0, cons0(w, z)) → true0
app0(nil0, y) → y
reverse0(add0(n, x)) → app0(reverse0(x), add0(n, nil0))
minus(s0(x)) → minus(x)
minus(x) → x
less_leaves0(cons0(u, v), cons0(w, z)) → less_leaves0(concat0(u, v), concat0(w, z))
rand0(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(78) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
concat0(leaf0, y) → y
concat0(cons0(u, v), y) → cons0(u, concat0(v, y))
less_leaves0(x, leaf0) → false0
less_leaves0(leaf0, cons0(w, z)) → true0
less_leaves0(cons0(u, v), cons0(w, z)) → less_leaves0(concat0(u, v), concat0(w, z))
rand0(x) → x
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0   
POL(QUOT(x1)) = x1   
POL(add0(x1, x2)) = x1 + x2   
POL(app0(x1, x2)) = x1 + x2   
POL(concat0(x1, x2)) = 2·x1 + x2   
POL(cons0(x1, x2)) = 1 + 2·x1 + x2   
POL(false0) = 0   
POL(leaf0) = 1   
POL(less_leaves0(x1, x2)) = x1 + x2   
POL(minus(x1)) = x1   
POL(nil0) = 0   
POL(quot0(x1, x2)) = x1 + x2   
POL(rand0(x1)) = 2 + x1   
POL(reverse0(x1)) = x1   
POL(s0(x1)) = x1   
POL(shuffle0(x1)) = x1   
POL(true0) = 0   
 
(79) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOT(s0(x)) → QUOT(minus(x))
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
rand0(x) → rand0(s0(x))
shuffle0(nil0) → nil0
shuffle0(add0(n, x)) → add0(n, shuffle0(reverse0(x)))
quot0(00, s0(y)) → 00
reverse0(nil0) → nil0
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
reverse0(add0(n, x)) → app0(reverse0(x), add0(n, nil0))
minus(s0(x)) → minus(x)
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(80) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
shuffle0(nil0) → nil0
quot0(00, s0(y)) → 00
Used ordering: Polynomial interpretation [POLO]:
POL(00) = 0   
POL(QUOT(x1)) = x1   
POL(add0(x1, x2)) = x1 + x2   
POL(app0(x1, x2)) = x1 + x2   
POL(minus(x1)) = x1   
POL(nil0) = 0   
POL(quot0(x1, x2)) = 2 + 2·x1 + x2   
POL(rand0(x1)) = x1   
POL(reverse0(x1)) = x1   
POL(s0(x1)) = x1   
POL(shuffle0(x1)) = 2 + x1   
 
(81) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOT(s0(x)) → QUOT(minus(x))
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
rand0(x) → rand0(s0(x))
shuffle0(add0(n, x)) → add0(n, shuffle0(reverse0(x)))
reverse0(nil0) → nil0
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
reverse0(add0(n, x)) → app0(reverse0(x), add0(n, nil0))
minus(s0(x)) → minus(x)
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(82) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
shuffle0(add0(n, x)) → add0(n, shuffle0(reverse0(x)))
Used ordering: Polynomial interpretation [POLO]:
POL(QUOT(x1)) = x1   
POL(add0(x1, x2)) = 2 + x1 + x2   
POL(app0(x1, x2)) = x1 + x2   
POL(minus(x1)) = x1   
POL(nil0) = 0   
POL(quot0(x1, x2)) = 2·x1 + x2   
POL(rand0(x1)) = x1   
POL(reverse0(x1)) = x1   
POL(s0(x1)) = x1   
POL(shuffle0(x1)) = 2·x1   
 
(83) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOT(s0(x)) → QUOT(minus(x))
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
rand0(x) → rand0(s0(x))
reverse0(nil0) → nil0
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
reverse0(add0(n, x)) → app0(reverse0(x), add0(n, nil0))
minus(s0(x)) → minus(x)
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(84) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
reverse0(nil0) → nil0
reverse0(add0(n, x)) → app0(reverse0(x), add0(n, nil0))
Used ordering: Polynomial interpretation [POLO]:
POL(QUOT(x1)) = x1   
POL(add0(x1, x2)) = 2 + x1 + x2   
POL(app0(x1, x2)) = x1 + x2   
POL(minus(x1)) = x1   
POL(nil0) = 0   
POL(quot0(x1, x2)) = 2·x1 + x2   
POL(rand0(x1)) = x1   
POL(reverse0(x1)) = 2 + 2·x1   
POL(s0(x1)) = x1   
 
(85) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOT(s0(x)) → QUOT(minus(x))
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
rand0(x) → rand0(s0(x))
app0(add0(n, x), y) → add0(n, app0(x, y))
app0(nil0, y) → y
minus(s0(x)) → minus(x)
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(86) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
app0(nil0, y) → y
Used ordering: Polynomial interpretation [POLO]:
POL(QUOT(x1)) = x1   
POL(add0(x1, x2)) = x1 + x2   
POL(app0(x1, x2)) = 2·x1 + x2   
POL(minus(x1)) = x1   
POL(nil0) = 1   
POL(quot0(x1, x2)) = x1 + x2   
POL(rand0(x1)) = x1   
POL(s0(x1)) = x1   
 
(87) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOT(s0(x)) → QUOT(minus(x))
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
rand0(x) → rand0(s0(x))
app0(add0(n, x), y) → add0(n, app0(x, y))
minus(s0(x)) → minus(x)
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(88) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
app0(add0(n, x), y) → add0(n, app0(x, y))
Used ordering: Polynomial interpretation [POLO]:
POL(QUOT(x1)) = x1   
POL(add0(x1, x2)) = 2 + x1 + x2   
POL(app0(x1, x2)) = 2 + 2·x1 + x2   
POL(minus(x1)) = x1   
POL(quot0(x1, x2)) = 2·x1 + x2   
POL(rand0(x1)) = x1   
POL(s0(x1)) = x1   
 
(89) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOT(s0(x)) → QUOT(minus(x))
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
rand0(x) → rand0(s0(x))
minus(s0(x)) → minus(x)
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(90) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
QUOT(s0(x)) → QUOT(minus(x))
The remaining pairs can at least be oriented weakly.
Used ordering:  Combined order from the following AFS and order.
QUOT(
x1)  =  
QUOT(
x1)
s0(
x1)  =  
s0(
x1)
minus(
x1)  =  
x1
quot0(
x1, 
x2)  =  
quot0(
x1, 
x2)
rand0(
x1)  =  
rand0
Recursive path order with status [RPO].
Quasi-Precedence: 
quot02 > [QUOT1, s01]
rand0 > [QUOT1, s01]
Status: 
QUOT1: multiset
s01: multiset
quot02: [2,1]
rand0: []
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
rand0(x) → rand0(s0(x))
minus(s0(x)) → minus(x)
minus(x) → x
 
(91) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
rand0(x) → rand0(s0(x))
minus(s0(x)) → minus(x)
minus(x) → x
Q is empty.
We have to consider all (P,Q,R)-chains.
 
(92) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(93) YES