YES
0 RelTRS
↳1 RelTRStoRelADPProof (⇔, 0 ms)
↳2 RelADPP
↳3 RelADPDepGraphProof (⇔, 0 ms)
↳4 AND
↳5 RelADPP
↳6 RelADPCleverAfsProof (⇒, 44 ms)
↳7 QDP
↳8 MRRProof (⇔, 24 ms)
↳9 QDP
↳10 QDPOrderProof (⇔, 0 ms)
↳11 QDP
↳12 PisEmptyProof (⇔, 0 ms)
↳13 YES
↳14 RelADPP
↳15 RelADPCleverAfsProof (⇒, 51 ms)
↳16 QDP
↳17 MRRProof (⇔, 0 ms)
↳18 QDP
↳19 PisEmptyProof (⇔, 0 ms)
↳20 YES
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, s(x), s(y)) → s(x)
if(false, s(x), s(y)) → s(y)
g(x, c(y)) → c(g(x, y))
g(x, c(y)) → g(x, if(f(x), c(g(s(x), y)), c(y)))
rand(x) → rand(s(x))
rand(x) → x
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
f(0) → true
f(1) → false
f(s(x)) → F(x)
if(true, s(x), s(y)) → s(x)
if(false, s(x), s(y)) → s(y)
g(x, c(y)) → c(G(x, y))
g(x, c(y)) → G(x, if(f(x), c(g(s(x), y)), c(y)))
g(x, c(y)) → g(x, IF(f(x), c(g(s(x), y)), c(y)))
g(x, c(y)) → g(x, if(F(x), c(g(s(x), y)), c(y)))
g(x, c(y)) → g(x, if(f(x), c(G(s(x), y)), c(y)))
rand(x) → RAND(s(x))
rand(x) → x
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
2 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 2 subproblems.
f(s(x)) → F(x)
if(false, s(x), s(y)) → s(y)
if(true, s(x), s(y)) → s(x)
g(x, c(y)) → c(g(x, y))
f(1) → false
g(x, c(y)) → g(x, if(f(x), c(g(s(x), y)), c(y)))
f(0) → true
rand(x) → rand(s(x))
rand(x) → x
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
true =
c_1 =
f_1 =
if_3 =
0 =
1 =
F_1 =
rand_1 =
g_2 = 1
false =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
F(x1) = x1
s(x1) = s(x1)
g(x1, x2) = g(x1)
c(x1) = x1
if(x1, x2, x3) = if(x1, x2, x3)
f(x1) = f(x1)
false = false
true = true
1 = 1
0 = 0
Recursive path order with status [RPO].
Quasi-Precedence:
g1 > s1
g1 > if3
[f1, true] > s1
[f1, true] > false
1 > false
s1: multiset
g1: [1]
if3: multiset
f1: multiset
false: multiset
true: multiset
1: multiset
0: multiset
F0(s0(x)) → F0(x)
if0(false0, s0(x), s0(y)) → s0(y)
if0(true0, s0(x), s0(y)) → s0(x)
g(x) → c0(g(x))
f0(10) → false0
g(x) → g(x)
f0(00) → true0
f0(s0(x)) → f0(x)
rand0(x) → rand0(s0(x))
rand0(x) → x
if0(false0, s0(x), s0(y)) → s0(y)
if0(true0, s0(x), s0(y)) → s0(x)
f0(10) → false0
f0(00) → true0
rand0(x) → x
POL(00) = 0
POL(10) = 0
POL(F0(x1)) = x1
POL(c0(x1)) = x1
POL(f0(x1)) = 1 + x1
POL(false0) = 0
POL(g(x1)) = x1
POL(if0(x1, x2, x3)) = 2 + x1 + x2 + x3
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
POL(true0) = 0
F0(s0(x)) → F0(x)
g(x) → c0(g(x))
g(x) → g(x)
f0(s0(x)) → f0(x)
rand0(x) → rand0(s0(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F0(s0(x)) → F0(x)
[s01, f0] > rand0
[g, c0] > rand0
s01: multiset
g: []
c0: []
f0: multiset
rand0: multiset
g(x) → c0(g(x))
g(x) → g(x)
f0(s0(x)) → f0(x)
rand0(x) → rand0(s0(x))
g(x) → c0(g(x))
g(x) → g(x)
f0(s0(x)) → f0(x)
rand0(x) → rand0(s0(x))
g(x, c(y)) → g(x, if(f(x), c(G(s(x), y)), c(y)))
g(x, c(y)) → c(G(x, y))
if(false, s(x), s(y)) → s(y)
if(true, s(x), s(y)) → s(x)
f(1) → false
g(x, c(y)) → g(x, if(f(x), c(g(s(x), y)), c(y)))
f(0) → true
f(s(x)) → f(x)
rand(x) → rand(s(x))
rand(x) → x
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 = 0
true =
c_1 =
G_2 = 0
if_3 = 0, 1, 2
f_1 = 0
0 =
1 =
rand_1 =
g_2 = 0
false =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
G(x1, x2) = G(x2)
c(x1) = c(x1)
s(x1) = s
g(x1, x2) = g(x2)
if(x1, x2, x3) = if
f(x1) = f
false = false
true = true
1 = 1
0 = 0
Recursive path order with status [RPO].
Quasi-Precedence:
g1 > [G1, c1, s, if]
f > false > [G1, c1, s, if]
f > true > [G1, c1, s, if]
0 > true > [G1, c1, s, if]
G1: multiset
c1: multiset
s: multiset
g1: multiset
if: multiset
f: []
false: multiset
true: multiset
1: multiset
0: multiset
G(c0(y)) → G(y)
if → s
g(c0(y)) → c0(g(y))
f → false0
g(c0(y)) → g(if)
f → true0
f → f
rand0(x) → rand0(s)
rand0(x) → x
G(c0(y)) → G(y)
if → s
g(c0(y)) → c0(g(y))
f → false0
g(c0(y)) → g(if)
f → true0
rand0(x) → x
false0 > f > g1 > c01 > G1 > rand01 > if > true0 > s
if=2
s=1
f=2
false0=1
true0=2
g_1=2
c0_1=1
rand0_1=1
G_1=1
f → f
rand0(x) → rand0(s)