YES
0 RelTRS
↳1 RelTRStoRelADPProof (⇔, 0 ms)
↳2 RelADPP
↳3 RelADPDepGraphProof (⇔, 0 ms)
↳4 AND
↳5 RelADPP
↳6 RelADPDerelatifyingProof (⇔, 0 ms)
↳7 QDP
↳8 MRRProof (⇔, 0 ms)
↳9 QDP
↳10 PisEmptyProof (⇔, 0 ms)
↳11 YES
↳12 RelADPP
↳13 RelADPDerelatifyingProof (⇔, 0 ms)
↳14 QDP
↳15 MRRProof (⇔, 14 ms)
↳16 QDP
↳17 PisEmptyProof (⇔, 0 ms)
↳18 YES
↳19 RelADPP
↳20 RelADPReductionPairProof (⇔, 47 ms)
↳21 RelADPP
↳22 DAbsisEmptyProof (⇔, 0 ms)
↳23 YES
↳24 RelADPP
↳25 RelADPReductionPairProof (⇔, 51 ms)
↳26 RelADPP
↳27 DAbsisEmptyProof (⇔, 0 ms)
↳28 YES
↳29 RelADPP
↳30 RelADPReductionPairProof (⇔, 53 ms)
↳31 RelADPP
↳32 DAbsisEmptyProof (⇔, 0 ms)
↳33 YES
↳34 RelADPP
↳35 RelADPReductionPairProof (⇔, 49 ms)
↳36 RelADPP
↳37 DAbsisEmptyProof (⇔, 0 ms)
↳38 YES
app(nil, y) → y
app(cons(n, x), y) → cons(n, app(x, y))
reverse(nil) → nil
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
shuffle(nil) → nil
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
shuffle(cons(x, xs)) → shuffle(consSwap(x, xs))
consSwap(x, xs) → cons(x, xs)
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
app(nil, y) → y
app(cons(n, x), y) → cons(n, APP(x, y))
reverse(nil) → nil
reverse(cons(n, x)) → APP(reverse(x), cons(n, nil))
reverse(cons(n, x)) → app(REVERSE(x), cons(n, nil))
shuffle(nil) → nil
shuffle(cons(n, x)) → cons(n, SHUFFLE(reverse(x)))
shuffle(cons(n, x)) → cons(n, shuffle(REVERSE(x)))
shuffle(cons(x, xs)) → SHUFFLE(CONSSWAP(x, xs))
consSwap(x, xs) → cons(x, xs)
consSwap(x, cons(y, xs)) → cons(y, CONSSWAP(x, xs))
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
3 SCCs with nodes from P_abs,
3 Lassos,
Result: This relative DT problem is equivalent to 6 subproblems.
app(cons(n, x), y) → cons(n, APP(x, y))
shuffle(cons(x, xs)) → shuffle(consSwap(x, xs))
reverse(nil) → nil
consSwap(x, xs) → cons(x, xs)
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
shuffle(nil) → nil
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
APP(cons(n, x), y) → APP(x, y)
shuffle(cons(x, xs)) → shuffle(consSwap(x, xs))
reverse(nil) → nil
consSwap(x, xs) → cons(x, xs)
app(cons(n, x), y) → cons(n, app(x, y))
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
shuffle(nil) → nil
APP(cons(n, x), y) → APP(x, y)
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
shuffle(nil) → nil
POL(APP(x1, x2)) = x1 + x2
POL(app(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 1 + x1 + x2
POL(consSwap(x1, x2)) = x1 + 2·x2
POL(nil) = 0
POL(reverse(x1)) = x1
POL(shuffle(x1)) = 1 + 2·x1
POL(xs) = 1
shuffle(cons(x, xs)) → shuffle(consSwap(x, xs))
reverse(nil) → nil
consSwap(x, xs) → cons(x, xs)
app(cons(n, x), y) → cons(n, app(x, y))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
reverse(cons(n, x)) → app(REVERSE(x), cons(n, nil))
shuffle(cons(x, xs)) → shuffle(consSwap(x, xs))
reverse(nil) → nil
consSwap(x, xs) → cons(x, xs)
app(cons(n, x), y) → cons(n, app(x, y))
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
shuffle(nil) → nil
We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.
REVERSE(cons(n, x)) → REVERSE(x)
shuffle(cons(x, xs)) → shuffle(consSwap(x, xs))
reverse(nil) → nil
consSwap(x, xs) → cons(x, xs)
app(cons(n, x), y) → cons(n, app(x, y))
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
shuffle(nil) → nil
REVERSE(cons(n, x)) → REVERSE(x)
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
shuffle(nil) → nil
POL(REVERSE(x1)) = x1
POL(app(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 1 + x1 + x2
POL(consSwap(x1, x2)) = x1 + 2·x2
POL(nil) = 0
POL(reverse(x1)) = x1
POL(shuffle(x1)) = 1 + 2·x1
POL(xs) = 1
shuffle(cons(x, xs)) → shuffle(consSwap(x, xs))
reverse(nil) → nil
consSwap(x, xs) → cons(x, xs)
app(cons(n, x), y) → cons(n, app(x, y))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
shuffle(cons(n, x)) → cons(n, SHUFFLE(reverse(x)))
reverse(nil) → nil
consSwap(x, xs) → cons(x, xs)
app(cons(n, x), y) → cons(n, app(x, y))
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
shuffle(cons(x, xs)) → SHUFFLE(CONSSWAP(x, xs))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
shuffle(nil) → nil
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
shuffle(cons(n, x)) → cons(n, SHUFFLE(reverse(x)))
reverse(nil) → nil
consSwap(x, xs) → cons(x, xs)
app(cons(n, x), y) → cons(n, app(x, y))
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
shuffle(nil) → nil
POL(APP(x1, x2)) = x1
POL(CONSSWAP(x1, x2)) = 0
POL(REVERSE(x1)) = x12
POL(SHUFFLE(x1)) = 2 + x1
POL(app(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 3 + x2
POL(consSwap(x1, x2)) = 3 + x2
POL(nil) = 0
POL(reverse(x1)) = x1
POL(shuffle(x1)) = 1 + 2·x1
POL(xs) = 2
reverse(nil) → nil
consSwap(x, xs) → cons(x, xs)
app(cons(n, x), y) → cons(n, app(x, y))
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
shuffle(cons(x, xs)) → SHUFFLE(CONSSWAP(x, xs))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
shuffle(nil) → nil
shuffle(cons(n, x)) → cons(n, SHUFFLE(reverse(x)))
reverse(nil) → nil
consSwap(x, xs) → cons(x, xs)
app(cons(n, x), y) → cons(n, app(x, y))
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
shuffle(cons(x, xs)) → SHUFFLE(CONSSWAP(x, xs))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
shuffle(nil) → nil
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
shuffle(cons(n, x)) → cons(n, SHUFFLE(reverse(x)))
reverse(nil) → nil
consSwap(x, xs) → cons(x, xs)
app(cons(n, x), y) → cons(n, app(x, y))
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
shuffle(nil) → nil
POL(APP(x1, x2)) = x1
POL(CONSSWAP(x1, x2)) = 0
POL(REVERSE(x1)) = x12
POL(SHUFFLE(x1)) = 2 + x1
POL(app(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 3 + x2
POL(consSwap(x1, x2)) = 3 + x2
POL(nil) = 0
POL(reverse(x1)) = x1
POL(shuffle(x1)) = 1 + 2·x1
POL(xs) = 2
reverse(nil) → nil
consSwap(x, xs) → cons(x, xs)
app(cons(n, x), y) → cons(n, app(x, y))
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
shuffle(cons(x, xs)) → SHUFFLE(CONSSWAP(x, xs))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
shuffle(nil) → nil
shuffle(cons(n, x)) → cons(n, shuffle(REVERSE(x)))
reverse(nil) → nil
consSwap(x, xs) → cons(x, xs)
app(cons(n, x), y) → cons(n, app(x, y))
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
shuffle(cons(x, xs)) → SHUFFLE(CONSSWAP(x, xs))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
shuffle(nil) → nil
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
shuffle(cons(n, x)) → cons(n, shuffle(REVERSE(x)))
reverse(nil) → nil
consSwap(x, xs) → cons(x, xs)
app(cons(n, x), y) → cons(n, app(x, y))
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
shuffle(nil) → nil
POL(APP(x1, x2)) = 2·x1·x2
POL(CONSSWAP(x1, x2)) = 0
POL(REVERSE(x1)) = 2·x1
POL(SHUFFLE(x1)) = 2·x1
POL(app(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 3 + x2
POL(consSwap(x1, x2)) = 1 + 2·x2
POL(nil) = 0
POL(reverse(x1)) = x1
POL(shuffle(x1)) = x1
POL(xs) = 2
reverse(nil) → nil
consSwap(x, xs) → cons(x, xs)
app(cons(n, x), y) → cons(n, app(x, y))
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
shuffle(cons(x, xs)) → SHUFFLE(CONSSWAP(x, xs))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
shuffle(nil) → nil
shuffle(nil) → nil
reverse(nil) → nil
consSwap(x, xs) → cons(x, xs)
app(cons(n, x), y) → cons(n, app(x, y))
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
shuffle(cons(x, xs)) → SHUFFLE(CONSSWAP(x, xs))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
shuffle(nil) → nil
reverse(nil) → nil
consSwap(x, xs) → cons(x, xs)
app(cons(n, x), y) → cons(n, app(x, y))
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
POL(APP(x1, x2)) = 2 + 2·x2
POL(CONSSWAP(x1, x2)) = 0
POL(REVERSE(x1)) = 2 + 2·x12
POL(SHUFFLE(x1)) = 1 + 3·x1
POL(app(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 3 + 3·x1 + x2
POL(consSwap(x1, x2)) = 3 + 3·x1 + x2
POL(nil) = 0
POL(reverse(x1)) = x1
POL(shuffle(x1)) = 2 + 3·x1
POL(xs) = 3
reverse(nil) → nil
consSwap(x, xs) → cons(x, xs)
app(cons(n, x), y) → cons(n, app(x, y))
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
shuffle(cons(x, xs)) → SHUFFLE(CONSSWAP(x, xs))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
shuffle(nil) → nil