YES
0 RelTRS
↳1 RelTRStoRelADPProof (⇔, 0 ms)
↳2 RelADPP
↳3 RelADPDepGraphProof (⇔, 0 ms)
↳4 AND
↳5 RelADPP
↳6 RelADPCleverAfsProof (⇒, 29 ms)
↳7 QDP
↳8 MRRProof (⇔, 0 ms)
↳9 QDP
↳10 PisEmptyProof (⇔, 0 ms)
↳11 YES
↳12 RelADPP
↳13 RelADPCleverAfsProof (⇒, 44 ms)
↳14 QDP
↳15 MRRProof (⇔, 0 ms)
↳16 QDP
↳17 PisEmptyProof (⇔, 0 ms)
↳18 YES
↳19 RelADPP
↳20 RelADPReductionPairProof (⇔, 0 ms)
↳21 RelADPP
↳22 DAbsisEmptyProof (⇔, 0 ms)
↳23 YES
app(nil, y) → y
app(cons(n, x), y) → cons(n, app(x, y))
reverse(nil) → nil
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
shuffle(nil) → nil
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
shuffle(cons(n, cons(m, x))) → shuffle(cons(m, cons(n, x)))
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
app(nil, y) → y
app(cons(n, x), y) → cons(n, APP(x, y))
reverse(nil) → nil
reverse(cons(n, x)) → APP(reverse(x), cons(n, nil))
reverse(cons(n, x)) → app(REVERSE(x), cons(n, nil))
shuffle(nil) → nil
shuffle(cons(n, x)) → cons(n, SHUFFLE(reverse(x)))
shuffle(cons(n, x)) → cons(n, shuffle(REVERSE(x)))
shuffle(cons(n, cons(m, x))) → SHUFFLE(cons(m, cons(n, x)))
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
3 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 3 subproblems.
app(cons(n, x), y) → cons(n, APP(x, y))
reverse(nil) → nil
shuffle(cons(n, cons(m, x))) → shuffle(cons(m, cons(n, x)))
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
shuffle(nil) → nil
Furthermore, We use an argument filter [LPAR04].
Filtering:reverse_1 =
app_2 =
cons_2 = 0
shuffle_1 =
APP_2 = 1
nil =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
APP(x1, x2) = x1
cons(x1, x2) = cons(x2)
Recursive path order with status [RPO].
Quasi-Precedence:
trivial
cons1: multiset
APP(cons(x)) → APP(x)
reverse0(nil0) → nil0
shuffle0(cons(cons(x))) → shuffle0(cons(cons(x)))
app0(cons(x), y) → cons(app0(x, y))
shuffle0(cons(x)) → cons(shuffle0(reverse0(x)))
reverse0(cons(x)) → app0(reverse0(x), cons(nil0))
app0(nil0, y) → y
shuffle0(nil0) → nil0
APP(cons(x)) → APP(x)
shuffle0(cons(x)) → cons(shuffle0(reverse0(x)))
shuffle0(nil0) → nil0
POL(APP(x1)) = x1
POL(app0(x1, x2)) = x1 + x2
POL(cons(x1)) = 1 + x1
POL(nil0) = 0
POL(reverse0(x1)) = x1
POL(shuffle0(x1)) = 2 + 2·x1
reverse0(nil0) → nil0
shuffle0(cons(cons(x))) → shuffle0(cons(cons(x)))
app0(cons(x), y) → cons(app0(x, y))
reverse0(cons(x)) → app0(reverse0(x), cons(nil0))
app0(nil0, y) → y
reverse(cons(n, x)) → app(REVERSE(x), cons(n, nil))
reverse(nil) → nil
shuffle(cons(n, cons(m, x))) → shuffle(cons(m, cons(n, x)))
app(cons(n, x), y) → cons(n, app(x, y))
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
shuffle(nil) → nil
Furthermore, We use an argument filter [LPAR04].
Filtering:REVERSE_1 =
reverse_1 =
app_2 =
cons_2 = 0
shuffle_1 =
nil =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
REVERSE(x1) = REVERSE(x1)
cons(x1, x2) = cons(x2)
Recursive path order with status [RPO].
Quasi-Precedence:
[REVERSE1, cons1]
REVERSE1: [1]
cons1: multiset
REVERSE0(cons(x)) → REVERSE0(x)
reverse0(nil0) → nil0
shuffle0(cons(cons(x))) → shuffle0(cons(cons(x)))
app0(cons(x), y) → cons(app0(x, y))
shuffle0(cons(x)) → cons(shuffle0(reverse0(x)))
reverse0(cons(x)) → app0(reverse0(x), cons(nil0))
app0(nil0, y) → y
shuffle0(nil0) → nil0
REVERSE0(cons(x)) → REVERSE0(x)
shuffle0(cons(x)) → cons(shuffle0(reverse0(x)))
shuffle0(nil0) → nil0
POL(REVERSE0(x1)) = x1
POL(app0(x1, x2)) = x1 + x2
POL(cons(x1)) = 1 + x1
POL(nil0) = 0
POL(reverse0(x1)) = x1
POL(shuffle0(x1)) = 2 + 2·x1
reverse0(nil0) → nil0
shuffle0(cons(cons(x))) → shuffle0(cons(cons(x)))
app0(cons(x), y) → cons(app0(x, y))
reverse0(cons(x)) → app0(reverse0(x), cons(nil0))
app0(nil0, y) → y
shuffle(cons(n, x)) → cons(n, SHUFFLE(reverse(x)))
reverse(nil) → nil
shuffle(cons(n, cons(m, x))) → SHUFFLE(cons(m, cons(n, x)))
app(cons(n, x), y) → cons(n, app(x, y))
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
shuffle(nil) → nil
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
shuffle(cons(n, x)) → cons(n, SHUFFLE(reverse(x)))
reverse(nil) → nil
app(cons(n, x), y) → cons(n, app(x, y))
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
shuffle(nil) → nil
POL(APP(x1, x2)) = 2·x1·x2 + 2·x2
POL(REVERSE(x1)) = 2 + x1 + 2·x12
POL(SHUFFLE(x1)) = 2 + x1
POL(app(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 1 + x2
POL(nil) = 0
POL(reverse(x1)) = x1
POL(shuffle(x1)) = 3 + x1
reverse(nil) → nil
shuffle(cons(n, cons(m, x))) → SHUFFLE(cons(m, cons(n, x)))
app(cons(n, x), y) → cons(n, app(x, y))
shuffle(cons(n, x)) → cons(n, shuffle(reverse(x)))
reverse(cons(n, x)) → app(reverse(x), cons(n, nil))
app(nil, y) → y
shuffle(nil) → nil