YES Termination proof of AProVE_24_purge_2.ari

(0) Obligation:

Relative term rewrite system:
The relative TRS consists of the following R rules:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
rm(n, nil) → nil
rm(n, cons(m, x)) → ifrm(eq(n, m), n, cons(m, x))
ifrm(true, n, cons(m, x)) → rm(n, x)
ifrm(false, n, cons(m, x)) → cons(m, rm(n, x))
purge(nil) → nil
purge(cons(n, x)) → cons(n, purge(rm(n, x)))

The relative TRS consists of the following S rules:

consSwap(x, xs) → cons(x, xs)
purge(cons(x, xs)) → purge(consSwap(x, xs))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))

(1) RelTRStoRelADPProof (EQUIVALENT transformation)

We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].

(2) Obligation:

Relative ADP Problem with
absolute ADPs:

eq(0, 0) → true
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → EQ(x, y)
rm(n, nil) → nil
rm(n, cons(m, x)) → IFRM(eq(n, m), n, cons(m, x))
rm(n, cons(m, x)) → ifrm(EQ(n, m), n, cons(m, x))
ifrm(true, n, cons(m, x)) → RM(n, x)
ifrm(false, n, cons(m, x)) → cons(m, RM(n, x))
purge(nil) → nil
purge(cons(n, x)) → cons(n, PURGE(rm(n, x)))
purge(cons(n, x)) → cons(n, purge(RM(n, x)))

and relative ADPs:

consSwap(x, xs) → cons(x, xs)
purge(cons(x, xs)) → PURGE(CONSSWAP(x, xs))
consSwap(x, cons(y, xs)) → cons(y, CONSSWAP(x, xs))

(3) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
3 SCCs with nodes from P_abs,
3 Lassos,
Result: This relative DT problem is equivalent to 6 subproblems.

(4) Complex Obligation (AND)

(5) Obligation:

Relative ADP Problem with
absolute ADPs:

eq(s(x), s(y)) → EQ(x, y)

and relative ADPs:

ifrm(true, n, cons(m, x)) → rm(n, x)
ifrm(false, n, cons(m, x)) → cons(m, rm(n, x))
consSwap(x, xs) → cons(x, xs)
eq(0, s(x)) → false
eq(s(x), 0) → false
purge(cons(x, xs)) → purge(consSwap(x, xs))
eq(0, 0) → true
purge(cons(n, x)) → cons(n, purge(rm(n, x)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
rm(n, nil) → nil
rm(n, cons(m, x)) → ifrm(eq(n, m), n, cons(m, x))
purge(nil) → nil

(6) RelADPCleverAfsProof (SOUND transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

Furthermore, We use an argument filter [LPAR04].
Filtering:true = ifrm_3 = 0, 1 xs = rm_2 = 0, 1 false = nil = s_1 = eq_2 = 0 0 = purge_1 = cons_2 = 0, 1 consSwap_2 = 0 EQ_2 =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
EQ(x1, x2)  =  EQ(x1, x2)
s(x1)  =  s(x1)
rm(x1, x2)  =  rm
cons(x1, x2)  =  cons
ifrm(x1, x2, x3)  =  x3
eq(x1, x2)  =  eq(x2)
purge(x1)  =  purge(x1)
xs  =  xs
consSwap(x1, x2)  =  x2
nil  =  nil
true  =  true
0  =  0
false  =  false

Recursive path order with status [RPO].
Quasi-Precedence:

EQ2 > [nil, true, 0, false]
s1 > eq1 > [nil, true, 0, false]
purge1 > [rm, cons, xs] > [nil, true, 0, false]

Status:
EQ2: [2,1]
s1: multiset
rm: []
cons: []
eq1: multiset
purge1: multiset
xs: multiset
nil: multiset
true: multiset
0: multiset
false: multiset

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EQ0(s0(x), s0(y)) → EQ0(x, y)

The TRS R consists of the following rules:

ifrm(cons) → rm
consSwap(xs0) → cons
eq(s0(x)) → false0
eq(00) → false0
eq(s0(y)) → eq(y)
purge0(cons) → purge0(consSwap(xs0))
purge0(cons) → cons
consSwap(cons) → cons
rmifrm(cons)
purge0(nil0) → nil0
ifrm(cons) → cons
eq(00) → true0
rmnil0

Q is empty.
We have to consider all (P,Q,R)-chains.

(8) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

EQ0(s0(x), s0(y)) → EQ0(x, y)

Strictly oriented rules of the TRS R:

eq(s0(x)) → false0
eq(00) → false0
eq(s0(y)) → eq(y)
purge0(cons) → cons
consSwap(cons) → cons
purge0(nil0) → nil0
ifrm(cons) → cons
eq(00) → true0
rmnil0

Used ordering: Polynomial interpretation [POLO]:

POL(00) = 2   
POL(EQ0(x1, x2)) = x1 + x2   
POL(cons) = 1   
POL(consSwap(x1)) = 1 + x1   
POL(eq(x1)) = 2 + 2·x1   
POL(false0) = 1   
POL(ifrm(x1)) = 2·x1   
POL(nil0) = 1   
POL(purge0(x1)) = 2 + 2·x1   
POL(rm) = 2   
POL(s0(x1)) = 1 + x1   
POL(true0) = 1   
POL(xs0) = 0   

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

ifrm(cons) → rm
consSwap(xs0) → cons
purge0(cons) → purge0(consSwap(xs0))
rmifrm(cons)

Q is empty.
We have to consider all (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) YES

(12) Obligation:

Relative ADP Problem with
absolute ADPs:

ifrm(false, n, cons(m, x)) → cons(m, RM(n, x))
ifrm(true, n, cons(m, x)) → RM(n, x)
rm(n, cons(m, x)) → IFRM(eq(n, m), n, cons(m, x))

and relative ADPs:

consSwap(x, xs) → cons(x, xs)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
purge(cons(x, xs)) → purge(consSwap(x, xs))
eq(0, 0) → true
purge(cons(n, x)) → cons(n, purge(rm(n, x)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
rm(n, nil) → nil
rm(n, cons(m, x)) → ifrm(eq(n, m), n, cons(m, x))
purge(nil) → nil

(13) RelADPCleverAfsProof (SOUND transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

Furthermore, We use an argument filter [LPAR04].
Filtering:true = ifrm_3 = 0, 1 xs = rm_2 = 0 IFRM_3 = 0, 1 false = nil = s_1 = eq_2 = 0, 1 RM_2 = 0 0 = purge_1 = cons_2 = 0 consSwap_2 = 0
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
RM(x1, x2)  =  RM(x2)
cons(x1, x2)  =  cons(x2)
IFRM(x1, x2, x3)  =  x3
eq(x1, x2)  =  eq
false  =  false
true  =  true
0  =  0
s(x1)  =  x1
purge(x1)  =  purge(x1)
rm(x1, x2)  =  x2
ifrm(x1, x2, x3)  =  x3
nil  =  nil
xs  =  xs
consSwap(x1, x2)  =  consSwap(x2)

Recursive path order with status [RPO].
Quasi-Precedence:

[RM1, cons1, purge1, consSwap1] > [eq, false] > true
[RM1, cons1, purge1, consSwap1] > nil
[RM1, cons1, purge1, consSwap1] > xs

Status:
RM1: [1]
cons1: [1]
eq: multiset
false: multiset
true: multiset
0: multiset
purge1: [1]
nil: multiset
xs: multiset
consSwap1: [1]

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

RM(cons(x)) → IFRM(cons(x))
IFRM(cons(x)) → RM(x)

The TRS R consists of the following rules:

ifrm(cons(x)) → rm(x)
consSwap(xs0) → cons(xs0)
eqfalse0
eqeq
purge0(cons(xs0)) → purge0(consSwap(xs0))
purge0(cons(x)) → cons(purge0(rm(x)))
consSwap(cons(xs0)) → cons(consSwap(xs0))
rm(cons(x)) → ifrm(cons(x))
purge0(nil0) → nil0
ifrm(cons(x)) → cons(rm(x))
eqtrue0
rm(nil0) → nil0

Q is empty.
We have to consider all (P,Q,R)-chains.

(15) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

IFRM(cons(x)) → RM(x)

Strictly oriented rules of the TRS R:

ifrm(cons(x)) → rm(x)
eqfalse0
eqtrue0

Used ordering: Polynomial interpretation [POLO]:

POL(IFRM(x1)) = x1   
POL(RM(x1)) = x1   
POL(cons(x1)) = 1 + 2·x1   
POL(consSwap(x1)) = 1 + 2·x1   
POL(eq) = 2   
POL(false0) = 1   
POL(ifrm(x1)) = x1   
POL(nil0) = 0   
POL(purge0(x1)) = x1   
POL(rm(x1)) = x1   
POL(true0) = 0   
POL(xs0) = 1   

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

RM(cons(x)) → IFRM(cons(x))

The TRS R consists of the following rules:

consSwap(xs0) → cons(xs0)
eqeq
purge0(cons(xs0)) → purge0(consSwap(xs0))
purge0(cons(x)) → cons(purge0(rm(x)))
consSwap(cons(xs0)) → cons(consSwap(xs0))
rm(cons(x)) → ifrm(cons(x))
purge0(nil0) → nil0
ifrm(cons(x)) → cons(rm(x))
rm(nil0) → nil0

Q is empty.
We have to consider all (P,Q,R)-chains.

(17) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(18) TRUE

(19) Obligation:

Relative ADP Problem with
absolute ADPs:

purge(cons(n, x)) → cons(n, PURGE(rm(n, x)))

and relative ADPs:

ifrm(true, n, cons(m, x)) → rm(n, x)
consSwap(x, xs) → cons(x, xs)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
purge(cons(n, x)) → cons(n, purge(rm(n, x)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
rm(n, cons(m, x)) → ifrm(eq(n, m), n, cons(m, x))
purge(nil) → nil
purge(cons(x, xs)) → PURGE(CONSSWAP(x, xs))
ifrm(false, n, cons(m, x)) → cons(m, rm(n, x))
eq(0, 0) → true
rm(n, nil) → nil

(20) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


purge(cons(n, x)) → cons(n, PURGE(rm(n, x)))

Relative ADPs:

ifrm(true, n, cons(m, x)) → rm(n, x)
ifrm(false, n, cons(m, x)) → cons(m, rm(n, x))
consSwap(x, xs) → cons(x, xs)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
purge(cons(n, x)) → cons(n, purge(rm(n, x)))
eq(0, 0) → true
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
rm(n, nil) → nil
rm(n, cons(m, x)) → ifrm(eq(n, m), n, cons(m, x))
purge(nil) → nil


The remaining rules can at least be oriented weakly:

Ordered with Polynomial interpretation [POLO]:

POL(0) = 1   
POL(CONSSWAP(x1, x2)) = 0   
POL(EQ(x1, x2)) = 2 + 2·x1·x2   
POL(IFRM(x1, x2, x3)) = 2 + x1 + 2·x2   
POL(PURGE(x1)) = 2 + 3·x1   
POL(RM(x1, x2)) = 2 + 2·x2   
POL(cons(x1, x2)) = 3 + 2·x1 + x2   
POL(consSwap(x1, x2)) = 3 + 2·x1 + x2   
POL(eq(x1, x2)) = 0   
POL(false) = 0   
POL(ifrm(x1, x2, x3)) = x1 + x3   
POL(nil) = 0   
POL(purge(x1)) = x1   
POL(rm(x1, x2)) = x2   
POL(s(x1)) = 3 + 3·x1   
POL(true) = 0   
POL(xs) = 2   

(21) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

ifrm(true, n, cons(m, x)) → rm(n, x)
consSwap(x, xs) → cons(x, xs)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
purge(cons(n, x)) → cons(n, purge(rm(n, x)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
rm(n, cons(m, x)) → ifrm(eq(n, m), n, cons(m, x))
purge(nil) → nil
purge(cons(x, xs)) → PURGE(CONSSWAP(x, xs))
ifrm(false, n, cons(m, x)) → cons(m, rm(n, x))
eq(0, 0) → true
rm(n, nil) → nil

(22) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(23) YES

(24) Obligation:

Relative ADP Problem with
absolute ADPs:

purge(cons(n, x)) → cons(n, purge(RM(n, x)))

and relative ADPs:

ifrm(true, n, cons(m, x)) → rm(n, x)
consSwap(x, xs) → cons(x, xs)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
purge(cons(n, x)) → cons(n, purge(rm(n, x)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
rm(n, cons(m, x)) → ifrm(eq(n, m), n, cons(m, x))
purge(nil) → nil
purge(cons(x, xs)) → PURGE(CONSSWAP(x, xs))
ifrm(false, n, cons(m, x)) → cons(m, rm(n, x))
eq(0, 0) → true
rm(n, nil) → nil

(25) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


purge(cons(n, x)) → cons(n, purge(RM(n, x)))

Relative ADPs:

ifrm(true, n, cons(m, x)) → rm(n, x)
ifrm(false, n, cons(m, x)) → cons(m, rm(n, x))
consSwap(x, xs) → cons(x, xs)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
purge(cons(n, x)) → cons(n, purge(rm(n, x)))
eq(0, 0) → true
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
rm(n, nil) → nil
rm(n, cons(m, x)) → ifrm(eq(n, m), n, cons(m, x))
purge(nil) → nil


The remaining rules can at least be oriented weakly:

Ordered with Polynomial interpretation [POLO]:

POL(0) = 3   
POL(CONSSWAP(x1, x2)) = 0   
POL(EQ(x1, x2)) = 2·x1·x2   
POL(IFRM(x1, x2, x3)) = 2 + 2·x2   
POL(PURGE(x1)) = 2 + 3·x1   
POL(RM(x1, x2)) = 1   
POL(cons(x1, x2)) = 2   
POL(consSwap(x1, x2)) = 1 + x2   
POL(eq(x1, x2)) = 3   
POL(false) = 2   
POL(ifrm(x1, x2, x3)) = x1 + 3·x2   
POL(nil) = 0   
POL(purge(x1)) = 2 + 3·x1   
POL(rm(x1, x2)) = 3 + 3·x1   
POL(s(x1)) = 3 + 3·x1   
POL(true) = 3   
POL(xs) = 1   

(26) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

ifrm(true, n, cons(m, x)) → rm(n, x)
consSwap(x, xs) → cons(x, xs)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
purge(cons(n, x)) → cons(n, purge(rm(n, x)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
rm(n, cons(m, x)) → ifrm(eq(n, m), n, cons(m, x))
purge(nil) → nil
purge(cons(x, xs)) → PURGE(CONSSWAP(x, xs))
ifrm(false, n, cons(m, x)) → cons(m, rm(n, x))
eq(0, 0) → true
rm(n, nil) → nil

(27) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(28) YES

(29) Obligation:

Relative ADP Problem with
absolute ADPs:

purge(nil) → nil

and relative ADPs:

ifrm(true, n, cons(m, x)) → rm(n, x)
ifrm(false, n, cons(m, x)) → cons(m, rm(n, x))
consSwap(x, xs) → cons(x, xs)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
purge(cons(n, x)) → cons(n, purge(rm(n, x)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
rm(n, nil) → nil
rm(n, cons(m, x)) → ifrm(eq(n, m), n, cons(m, x))
purge(cons(x, xs)) → PURGE(CONSSWAP(x, xs))

(30) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


purge(nil) → nil

Relative ADPs:

ifrm(true, n, cons(m, x)) → rm(n, x)
ifrm(false, n, cons(m, x)) → cons(m, rm(n, x))
consSwap(x, xs) → cons(x, xs)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0) → true
purge(cons(n, x)) → cons(n, purge(rm(n, x)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
rm(n, nil) → nil
rm(n, cons(m, x)) → ifrm(eq(n, m), n, cons(m, x))


The remaining rules can at least be oriented weakly:

Ordered with Polynomial interpretation [POLO]:

POL(0) = 2   
POL(CONSSWAP(x1, x2)) = 0   
POL(EQ(x1, x2)) = 2·x1·x2   
POL(IFRM(x1, x2, x3)) = 2 + 2·x1 + 2·x2   
POL(PURGE(x1)) = 1 + x1   
POL(RM(x1, x2)) = 2 + 2·x1   
POL(cons(x1, x2)) = 1 + 3·x2   
POL(consSwap(x1, x2)) = 1 + 3·x2   
POL(eq(x1, x2)) = 0   
POL(false) = 0   
POL(ifrm(x1, x2, x3)) = 3·x1 + x3   
POL(nil) = 0   
POL(purge(x1)) = 1 + 3·x1   
POL(rm(x1, x2)) = x2   
POL(s(x1)) = 1 + 3·x1   
POL(true) = 0   
POL(xs) = 2   

(31) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

ifrm(true, n, cons(m, x)) → rm(n, x)
consSwap(x, xs) → cons(x, xs)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
purge(cons(n, x)) → cons(n, purge(rm(n, x)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
rm(n, cons(m, x)) → ifrm(eq(n, m), n, cons(m, x))
purge(nil) → nil
purge(cons(x, xs)) → PURGE(CONSSWAP(x, xs))
ifrm(false, n, cons(m, x)) → cons(m, rm(n, x))
eq(0, 0) → true
rm(n, nil) → nil

(32) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(33) YES

(34) Obligation:

Relative ADP Problem with
absolute ADPs:

purge(cons(n, x)) → cons(n, PURGE(rm(n, x)))

and relative ADPs:

ifrm(true, n, cons(m, x)) → rm(n, x)
consSwap(x, xs) → cons(x, xs)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
purge(cons(n, x)) → cons(n, purge(rm(n, x)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
rm(n, cons(m, x)) → ifrm(eq(n, m), n, cons(m, x))
purge(nil) → nil
purge(cons(x, xs)) → PURGE(CONSSWAP(x, xs))
ifrm(false, n, cons(m, x)) → cons(m, rm(n, x))
eq(0, 0) → true
rm(n, nil) → nil

(35) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


purge(cons(n, x)) → cons(n, PURGE(rm(n, x)))

Relative ADPs:

ifrm(true, n, cons(m, x)) → rm(n, x)
ifrm(false, n, cons(m, x)) → cons(m, rm(n, x))
consSwap(x, xs) → cons(x, xs)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
purge(cons(n, x)) → cons(n, purge(rm(n, x)))
eq(0, 0) → true
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
rm(n, nil) → nil
rm(n, cons(m, x)) → ifrm(eq(n, m), n, cons(m, x))
purge(nil) → nil


The remaining rules can at least be oriented weakly:

Ordered with Polynomial interpretation [POLO]:

POL(0) = 1   
POL(CONSSWAP(x1, x2)) = 0   
POL(EQ(x1, x2)) = 2 + 2·x1·x2   
POL(IFRM(x1, x2, x3)) = 2 + x1 + 2·x2   
POL(PURGE(x1)) = 2 + 3·x1   
POL(RM(x1, x2)) = 2 + 2·x2   
POL(cons(x1, x2)) = 3 + 2·x1 + x2   
POL(consSwap(x1, x2)) = 3 + 2·x1 + x2   
POL(eq(x1, x2)) = 0   
POL(false) = 0   
POL(ifrm(x1, x2, x3)) = x1 + x3   
POL(nil) = 0   
POL(purge(x1)) = x1   
POL(rm(x1, x2)) = x2   
POL(s(x1)) = 3 + 3·x1   
POL(true) = 0   
POL(xs) = 2   

(36) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

ifrm(true, n, cons(m, x)) → rm(n, x)
consSwap(x, xs) → cons(x, xs)
eq(0, s(x)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
purge(cons(n, x)) → cons(n, purge(rm(n, x)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
rm(n, cons(m, x)) → ifrm(eq(n, m), n, cons(m, x))
purge(nil) → nil
purge(cons(x, xs)) → PURGE(CONSSWAP(x, xs))
ifrm(false, n, cons(m, x)) → cons(m, rm(n, x))
eq(0, 0) → true
rm(n, nil) → nil

(37) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(38) YES