YES
0 RelTRS
↳1 RelTRStoRelADPProof (⇔, 0 ms)
↳2 RelADPP
↳3 RelADPDepGraphProof (⇔, 0 ms)
↳4 AND
↳5 RelADPP
↳6 RelADPCleverAfsProof (⇒, 86 ms)
↳7 QDP
↳8 MRRProof (⇔, 0 ms)
↳9 QDP
↳10 MRRProof (⇔, 8 ms)
↳11 QDP
↳12 MRRProof (⇔, 0 ms)
↳13 QDP
↳14 PisEmptyProof (⇔, 0 ms)
↳15 YES
↳16 RelADPP
↳17 RelADPCleverAfsProof (⇒, 86 ms)
↳18 QDP
↳19 MRRProof (⇔, 0 ms)
↳20 QDP
↳21 MRRProof (⇔, 6 ms)
↳22 QDP
↳23 DependencyGraphProof (⇔, 0 ms)
↳24 TRUE
↳25 RelADPP
↳26 RelADPCleverAfsProof (⇒, 80 ms)
↳27 QDP
↳28 MRRProof (⇔, 0 ms)
↳29 QDP
↳30 MRRProof (⇔, 5 ms)
↳31 QDP
↳32 MRRProof (⇔, 0 ms)
↳33 QDP
↳34 PisEmptyProof (⇔, 0 ms)
↳35 YES
↳36 RelADPP
↳37 RelADPReductionPairProof (⇔, 110 ms)
↳38 RelADPP
↳39 DAbsisEmptyProof (⇔, 0 ms)
↳40 YES
↳41 RelADPP
↳42 RelADPReductionPairProof (⇔, 86 ms)
↳43 RelADPP
↳44 DAbsisEmptyProof (⇔, 0 ms)
↳45 YES
↳46 RelADPP
↳47 RelADPReductionPairProof (⇔, 83 ms)
↳48 RelADPP
↳49 DAbsisEmptyProof (⇔, 0 ms)
↳50 YES
↳51 RelADPP
↳52 RelADPReductionPairProof (⇔, 87 ms)
↳53 RelADPP
↳54 DAbsisEmptyProof (⇔, 0 ms)
↳55 YES
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) → 0
ifminus(false, s(x), y) → s(minus(x, y))
div(0, s(y)) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
divL(x, nil) → x
divL(x, cons(y, xs)) → divL(div(x, y), xs)
consSwap(x, xs) → cons(x, xs)
divL(z, cons(x, xs)) → divL(z, consSwap(x, xs))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → LE(x, y)
minus(0, y) → 0
minus(s(x), y) → IFMINUS(le(s(x), y), s(x), y)
minus(s(x), y) → ifminus(LE(s(x), y), s(x), y)
ifminus(true, s(x), y) → 0
ifminus(false, s(x), y) → s(MINUS(x, y))
div(0, s(y)) → 0
div(s(x), s(y)) → s(DIV(minus(x, y), s(y)))
div(s(x), s(y)) → s(div(MINUS(x, y), s(y)))
divL(x, nil) → x
divL(x, cons(y, xs)) → DIVL(div(x, y), xs)
divL(x, cons(y, xs)) → divL(DIV(x, y), xs)
consSwap(x, xs) → cons(x, xs)
divL(z, cons(x, xs)) → DIVL(z, CONSSWAP(x, xs))
consSwap(x, cons(y, xs)) → cons(y, CONSSWAP(x, xs))
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
4 SCCs with nodes from P_abs,
3 Lassos,
Result: This relative DT problem is equivalent to 7 subproblems.
le(s(x), s(y)) → LE(x, y)
div(0, s(y)) → 0
consSwap(x, xs) → cons(x, xs)
divL(x, cons(y, xs)) → divL(div(x, y), xs)
divL(z, cons(x, xs)) → divL(z, consSwap(x, xs))
le(s(x), 0) → false
ifminus(true, s(x), y) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
minus(0, y) → 0
divL(x, nil) → x
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
le(0, y) → true
ifminus(false, s(x), y) → s(minus(x, y))
Furthermore, We use an argument filter [LPAR04].
Filtering:true =
ifminus_3 = 0, 2
divL_2 =
false =
nil =
s_1 =
div_2 = 1
LE_2 = 1
le_2 = 0, 1
0 =
minus_2 = 1
cons_2 =
consSwap_2 =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
LE(x1, x2) = LE(x1)
s(x1) = s(x1)
div(x1, x2) = div(x1)
minus(x1, x2) = x1
ifminus(x1, x2, x3) = x2
le(x1, x2) = le
0 = 0
false = false
true = true
Recursive path order with status [RPO].
Quasi-Precedence:
[LE1, s1, div1, le, 0, false, true]
LE1: multiset
s1: multiset
div1: multiset
le: multiset
0: multiset
false: multiset
true: multiset
LE(s0(x)) → LE(x)
div(00) → 00
consSwap0(x, xs) → cons0(x, xs)
divL0(x, cons0(y, xs)) → divL0(div(x), xs)
le → le
divL0(z, cons0(x, xs)) → divL0(z, consSwap0(x, xs))
le → false0
ifminus(s0(x)) → 00
div(s0(x)) → s0(div(minus(x)))
consSwap0(x, cons0(y, xs)) → cons0(y, consSwap0(x, xs))
minus(00) → 00
divL0(x, nil0) → x
minus(s0(x)) → ifminus(s0(x))
le → true0
ifminus(s0(x)) → s0(minus(x))
le → false0
divL0(x, nil0) → x
POL(00) = 0
POL(LE(x1)) = x1
POL(cons0(x1, x2)) = x1 + x2
POL(consSwap0(x1, x2)) = x1 + x2
POL(div(x1)) = x1
POL(divL0(x1, x2)) = 2 + x1 + 2·x2
POL(false0) = 0
POL(ifminus(x1)) = x1
POL(le) = 2
POL(minus(x1)) = x1
POL(nil0) = 0
POL(s0(x1)) = 2·x1
POL(true0) = 2
LE(s0(x)) → LE(x)
div(00) → 00
consSwap0(x, xs) → cons0(x, xs)
divL0(x, cons0(y, xs)) → divL0(div(x), xs)
le → le
divL0(z, cons0(x, xs)) → divL0(z, consSwap0(x, xs))
ifminus(s0(x)) → 00
div(s0(x)) → s0(div(minus(x)))
consSwap0(x, cons0(y, xs)) → cons0(y, consSwap0(x, xs))
minus(00) → 00
minus(s0(x)) → ifminus(s0(x))
le → true0
ifminus(s0(x)) → s0(minus(x))
le → true0
POL(00) = 0
POL(LE(x1)) = 2·x1
POL(cons0(x1, x2)) = x1 + x2
POL(consSwap0(x1, x2)) = x1 + x2
POL(div(x1)) = x1
POL(divL0(x1, x2)) = x1 + 2·x2
POL(ifminus(x1)) = x1
POL(le) = 2
POL(minus(x1)) = x1
POL(s0(x1)) = x1
POL(true0) = 1
LE(s0(x)) → LE(x)
div(00) → 00
consSwap0(x, xs) → cons0(x, xs)
divL0(x, cons0(y, xs)) → divL0(div(x), xs)
le → le
divL0(z, cons0(x, xs)) → divL0(z, consSwap0(x, xs))
ifminus(s0(x)) → 00
div(s0(x)) → s0(div(minus(x)))
consSwap0(x, cons0(y, xs)) → cons0(y, consSwap0(x, xs))
minus(00) → 00
minus(s0(x)) → ifminus(s0(x))
ifminus(s0(x)) → s0(minus(x))
LE(s0(x)) → LE(x)
div(00) → 00
divL0(x, cons0(y, xs)) → divL0(div(x), xs)
ifminus(s0(x)) → 00
POL(00) = 0
POL(LE(x1)) = 2·x1
POL(cons0(x1, x2)) = 2 + x1 + x2
POL(consSwap0(x1, x2)) = 2 + x1 + x2
POL(div(x1)) = 1 + x1
POL(divL0(x1, x2)) = x1 + 2·x2
POL(ifminus(x1)) = x1
POL(le) = 0
POL(minus(x1)) = x1
POL(s0(x1)) = 1 + x1
consSwap0(x, xs) → cons0(x, xs)
le → le
divL0(z, cons0(x, xs)) → divL0(z, consSwap0(x, xs))
div(s0(x)) → s0(div(minus(x)))
consSwap0(x, cons0(y, xs)) → cons0(y, consSwap0(x, xs))
minus(00) → 00
minus(s0(x)) → ifminus(s0(x))
ifminus(s0(x)) → s0(minus(x))
minus(s(x), y) → IFMINUS(le(s(x), y), s(x), y)
ifminus(false, s(x), y) → s(MINUS(x, y))
div(0, s(y)) → 0
consSwap(x, xs) → cons(x, xs)
divL(x, cons(y, xs)) → divL(div(x, y), xs)
le(s(x), s(y)) → le(x, y)
divL(z, cons(x, xs)) → divL(z, consSwap(x, xs))
le(s(x), 0) → false
ifminus(true, s(x), y) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
minus(0, y) → 0
divL(x, nil) → x
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
le(0, y) → true
Furthermore, We use an argument filter [LPAR04].
Filtering:MINUS_2 = 1
true =
ifminus_3 = 0, 2
divL_2 =
IFMINUS_3 = 2
false =
nil =
s_1 =
div_2 = 1
le_2 = 0, 1
0 =
minus_2 = 1
cons_2 =
consSwap_2 =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
MINUS(x1, x2) = MINUS(x1)
s(x1) = s(x1)
IFMINUS(x1, x2, x3) = IFMINUS(x1, x2)
le(x1, x2) = le
false = false
0 = 0
true = true
minus(x1, x2) = x1
ifminus(x1, x2, x3) = x2
div(x1, x2) = x1
Recursive path order with status [RPO].
Quasi-Precedence:
s1 > [MINUS1, le, false, true] > [IFMINUS2, 0]
MINUS1: multiset
s1: [1]
IFMINUS2: [2,1]
le: multiset
false: multiset
0: multiset
true: multiset
MINUS(s0(x)) → IFMINUS(le, s0(x))
IFMINUS(false0, s0(x)) → MINUS(x)
div(00) → 00
consSwap0(x, xs) → cons0(x, xs)
divL0(x, cons0(y, xs)) → divL0(div(x), xs)
le → le
divL0(z, cons0(x, xs)) → divL0(z, consSwap0(x, xs))
le → false0
ifminus(s0(x)) → 00
div(s0(x)) → s0(div(minus(x)))
consSwap0(x, cons0(y, xs)) → cons0(y, consSwap0(x, xs))
minus(00) → 00
divL0(x, nil0) → x
minus(s0(x)) → ifminus(s0(x))
le → true0
ifminus(s0(x)) → s0(minus(x))
divL0(x, nil0) → x
POL(00) = 0
POL(IFMINUS(x1, x2)) = x1 + 2·x2
POL(MINUS(x1)) = 2·x1
POL(cons0(x1, x2)) = x1 + x2
POL(consSwap0(x1, x2)) = x1 + x2
POL(div(x1)) = x1
POL(divL0(x1, x2)) = 2 + 2·x1 + 2·x2
POL(false0) = 0
POL(ifminus(x1)) = x1
POL(le) = 0
POL(minus(x1)) = x1
POL(nil0) = 0
POL(s0(x1)) = x1
POL(true0) = 0
MINUS(s0(x)) → IFMINUS(le, s0(x))
IFMINUS(false0, s0(x)) → MINUS(x)
div(00) → 00
consSwap0(x, xs) → cons0(x, xs)
divL0(x, cons0(y, xs)) → divL0(div(x), xs)
le → le
divL0(z, cons0(x, xs)) → divL0(z, consSwap0(x, xs))
le → false0
ifminus(s0(x)) → 00
div(s0(x)) → s0(div(minus(x)))
consSwap0(x, cons0(y, xs)) → cons0(y, consSwap0(x, xs))
minus(00) → 00
minus(s0(x)) → ifminus(s0(x))
le → true0
ifminus(s0(x)) → s0(minus(x))
IFMINUS(false0, s0(x)) → MINUS(x)
le → true0
POL(00) = 2
POL(IFMINUS(x1, x2)) = 2 + x1 + x2
POL(MINUS(x1)) = 2 + 2·x1
POL(cons0(x1, x2)) = x1 + x2
POL(consSwap0(x1, x2)) = x1 + x2
POL(div(x1)) = x1
POL(divL0(x1, x2)) = x1 + 2·x2
POL(false0) = 2
POL(ifminus(x1)) = x1
POL(le) = 2
POL(minus(x1)) = x1
POL(s0(x1)) = 2 + 2·x1
POL(true0) = 1
MINUS(s0(x)) → IFMINUS(le, s0(x))
div(00) → 00
consSwap0(x, xs) → cons0(x, xs)
divL0(x, cons0(y, xs)) → divL0(div(x), xs)
le → le
divL0(z, cons0(x, xs)) → divL0(z, consSwap0(x, xs))
le → false0
ifminus(s0(x)) → 00
div(s0(x)) → s0(div(minus(x)))
consSwap0(x, cons0(y, xs)) → cons0(y, consSwap0(x, xs))
minus(00) → 00
minus(s0(x)) → ifminus(s0(x))
ifminus(s0(x)) → s0(minus(x))
div(s(x), s(y)) → s(DIV(minus(x, y), s(y)))
div(0, s(y)) → 0
consSwap(x, xs) → cons(x, xs)
divL(x, cons(y, xs)) → divL(div(x, y), xs)
le(s(x), s(y)) → le(x, y)
divL(z, cons(x, xs)) → divL(z, consSwap(x, xs))
le(s(x), 0) → false
ifminus(true, s(x), y) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
minus(0, y) → 0
divL(x, nil) → x
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
le(0, y) → true
ifminus(false, s(x), y) → s(minus(x, y))
Furthermore, We use an argument filter [LPAR04].
Filtering:true =
ifminus_3 = 0, 2
divL_2 =
false =
nil =
s_1 =
div_2 = 1
0 =
le_2 = 0, 1
minus_2 = 1
cons_2 =
consSwap_2 =
DIV_2 = 1
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
DIV(x1, x2) = DIV(x1)
s(x1) = s(x1)
minus(x1, x2) = x1
0 = 0
ifminus(x1, x2, x3) = x2
le(x1, x2) = le
false = false
true = true
div(x1, x2) = x1
Recursive path order with status [RPO].
Quasi-Precedence:
[DIV1, s1] > 0 > false
[le, true] > 0 > false
DIV1: [1]
s1: multiset
0: multiset
le: []
false: multiset
true: multiset
DIV(s0(x)) → DIV(minus(x))
div(00) → 00
consSwap0(x, xs) → cons0(x, xs)
divL0(x, cons0(y, xs)) → divL0(div(x), xs)
le → le
divL0(z, cons0(x, xs)) → divL0(z, consSwap0(x, xs))
le → false0
ifminus(s0(x)) → 00
div(s0(x)) → s0(div(minus(x)))
consSwap0(x, cons0(y, xs)) → cons0(y, consSwap0(x, xs))
minus(00) → 00
divL0(x, nil0) → x
minus(s0(x)) → ifminus(s0(x))
le → true0
ifminus(s0(x)) → s0(minus(x))
le → false0
divL0(x, nil0) → x
POL(00) = 0
POL(DIV(x1)) = 2·x1
POL(cons0(x1, x2)) = x1 + x2
POL(consSwap0(x1, x2)) = x1 + x2
POL(div(x1)) = x1
POL(divL0(x1, x2)) = 2 + 2·x1 + 2·x2
POL(false0) = 0
POL(ifminus(x1)) = x1
POL(le) = 2
POL(minus(x1)) = x1
POL(nil0) = 0
POL(s0(x1)) = 2·x1
POL(true0) = 2
DIV(s0(x)) → DIV(minus(x))
div(00) → 00
consSwap0(x, xs) → cons0(x, xs)
divL0(x, cons0(y, xs)) → divL0(div(x), xs)
le → le
divL0(z, cons0(x, xs)) → divL0(z, consSwap0(x, xs))
ifminus(s0(x)) → 00
div(s0(x)) → s0(div(minus(x)))
consSwap0(x, cons0(y, xs)) → cons0(y, consSwap0(x, xs))
minus(00) → 00
minus(s0(x)) → ifminus(s0(x))
le → true0
ifminus(s0(x)) → s0(minus(x))
le → true0
POL(00) = 0
POL(DIV(x1)) = x1
POL(cons0(x1, x2)) = x1 + x2
POL(consSwap0(x1, x2)) = x1 + x2
POL(div(x1)) = x1
POL(divL0(x1, x2)) = x1 + 2·x2
POL(ifminus(x1)) = x1
POL(le) = 2
POL(minus(x1)) = x1
POL(s0(x1)) = x1
POL(true0) = 1
DIV(s0(x)) → DIV(minus(x))
div(00) → 00
consSwap0(x, xs) → cons0(x, xs)
divL0(x, cons0(y, xs)) → divL0(div(x), xs)
le → le
divL0(z, cons0(x, xs)) → divL0(z, consSwap0(x, xs))
ifminus(s0(x)) → 00
div(s0(x)) → s0(div(minus(x)))
consSwap0(x, cons0(y, xs)) → cons0(y, consSwap0(x, xs))
minus(00) → 00
minus(s0(x)) → ifminus(s0(x))
ifminus(s0(x)) → s0(minus(x))
DIV(s0(x)) → DIV(minus(x))
divL0(x, cons0(y, xs)) → divL0(div(x), xs)
POL(00) = 2
POL(DIV(x1)) = x1
POL(cons0(x1, x2)) = 1 + x1 + x2
POL(consSwap0(x1, x2)) = 1 + x1 + x2
POL(div(x1)) = x1
POL(divL0(x1, x2)) = x1 + 2·x2
POL(ifminus(x1)) = x1
POL(le) = 0
POL(minus(x1)) = x1
POL(s0(x1)) = 2 + 2·x1
div(00) → 00
consSwap0(x, xs) → cons0(x, xs)
le → le
divL0(z, cons0(x, xs)) → divL0(z, consSwap0(x, xs))
ifminus(s0(x)) → 00
div(s0(x)) → s0(div(minus(x)))
consSwap0(x, cons0(y, xs)) → cons0(y, consSwap0(x, xs))
minus(00) → 00
minus(s0(x)) → ifminus(s0(x))
ifminus(s0(x)) → s0(minus(x))
divL(x, cons(y, xs)) → DIVL(div(x, y), xs)
div(0, s(y)) → 0
consSwap(x, xs) → cons(x, xs)
divL(x, cons(y, xs)) → divL(div(x, y), xs)
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
ifminus(true, s(x), y) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
divL(z, cons(x, xs)) → DIVL(z, CONSSWAP(x, xs))
minus(0, y) → 0
divL(x, nil) → x
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
le(0, y) → true
ifminus(false, s(x), y) → s(minus(x, y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
divL(x, cons(y, xs)) → DIVL(div(x, y), xs)
div(0, s(y)) → 0
consSwap(x, xs) → cons(x, xs)
divL(x, cons(y, xs)) → divL(div(x, y), xs)
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
ifminus(true, s(x), y) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
minus(0, y) → 0
divL(x, nil) → x
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
le(0, y) → true
ifminus(false, s(x), y) → s(minus(x, y))
POL(0) = 2
POL(CONSSWAP(x1, x2)) = 0
POL(DIV(x1, x2)) = 2 + 2·x1·x2
POL(DIVL(x1, x2)) = 2·x1 + 3·x2
POL(IFMINUS(x1, x2, x3)) = 2 + x1·x2·x3 + 2·x3
POL(LE(x1, x2)) = 2
POL(MINUS(x1, x2)) = 2
POL(cons(x1, x2)) = 3 + 3·x1 + x2
POL(consSwap(x1, x2)) = 3 + 3·x1 + x2
POL(div(x1, x2)) = 1 + 3·x2
POL(divL(x1, x2)) = x1 + 2·x2
POL(false) = 0
POL(ifminus(x1, x2, x3)) = 3 + 3·x1 + 3·x2
POL(le(x1, x2)) = 0
POL(minus(x1, x2)) = 3 + 3·x1
POL(nil) = 0
POL(s(x1)) = 3
POL(true) = 0
div(0, s(y)) → 0
consSwap(x, xs) → cons(x, xs)
divL(x, cons(y, xs)) → divL(div(x, y), xs)
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
ifminus(true, s(x), y) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
divL(z, cons(x, xs)) → DIVL(z, CONSSWAP(x, xs))
minus(0, y) → 0
divL(x, nil) → x
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
le(0, y) → true
ifminus(false, s(x), y) → s(minus(x, y))
divL(x, cons(y, xs)) → divL(DIV(x, y), xs)
div(0, s(y)) → 0
consSwap(x, xs) → cons(x, xs)
divL(x, cons(y, xs)) → divL(div(x, y), xs)
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
ifminus(true, s(x), y) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
divL(z, cons(x, xs)) → DIVL(z, CONSSWAP(x, xs))
minus(0, y) → 0
divL(x, nil) → x
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
le(0, y) → true
ifminus(false, s(x), y) → s(minus(x, y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
divL(x, cons(y, xs)) → divL(DIV(x, y), xs)
div(0, s(y)) → 0
consSwap(x, xs) → cons(x, xs)
divL(x, cons(y, xs)) → divL(div(x, y), xs)
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
ifminus(true, s(x), y) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
minus(0, y) → 0
divL(x, nil) → x
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
le(0, y) → true
ifminus(false, s(x), y) → s(minus(x, y))
POL(0) = 0
POL(CONSSWAP(x1, x2)) = 0
POL(DIV(x1, x2)) = 1
POL(DIVL(x1, x2)) = 2 + 2·x1 + 3·x2
POL(IFMINUS(x1, x2, x3)) = 2 + x1·x2 + 2·x3
POL(LE(x1, x2)) = 2 + 2·x1·x2
POL(MINUS(x1, x2)) = 2 + 2·x1
POL(cons(x1, x2)) = 2
POL(consSwap(x1, x2)) = 2
POL(div(x1, x2)) = x1
POL(divL(x1, x2)) = x1
POL(false) = 0
POL(ifminus(x1, x2, x3)) = 3·x1 + x2
POL(le(x1, x2)) = 0
POL(minus(x1, x2)) = x1
POL(nil) = 2
POL(s(x1)) = 1 + 3·x1
POL(true) = 0
div(0, s(y)) → 0
consSwap(x, xs) → cons(x, xs)
divL(x, cons(y, xs)) → divL(div(x, y), xs)
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
ifminus(true, s(x), y) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
divL(z, cons(x, xs)) → DIVL(z, CONSSWAP(x, xs))
minus(0, y) → 0
divL(x, nil) → x
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
le(0, y) → true
ifminus(false, s(x), y) → s(minus(x, y))
divL(x, cons(y, xs)) → DIVL(div(x, y), xs)
div(0, s(y)) → 0
consSwap(x, xs) → cons(x, xs)
divL(x, cons(y, xs)) → divL(div(x, y), xs)
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
ifminus(true, s(x), y) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
divL(z, cons(x, xs)) → DIVL(z, CONSSWAP(x, xs))
minus(0, y) → 0
divL(x, nil) → x
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
le(0, y) → true
ifminus(false, s(x), y) → s(minus(x, y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
divL(x, cons(y, xs)) → DIVL(div(x, y), xs)
div(0, s(y)) → 0
consSwap(x, xs) → cons(x, xs)
divL(x, cons(y, xs)) → divL(div(x, y), xs)
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
ifminus(true, s(x), y) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
minus(0, y) → 0
divL(x, nil) → x
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
le(0, y) → true
ifminus(false, s(x), y) → s(minus(x, y))
POL(0) = 2
POL(CONSSWAP(x1, x2)) = 0
POL(DIV(x1, x2)) = 2 + 2·x1·x2
POL(DIVL(x1, x2)) = 2·x1 + 3·x2
POL(IFMINUS(x1, x2, x3)) = 2 + x1·x2·x3 + 2·x3
POL(LE(x1, x2)) = 2
POL(MINUS(x1, x2)) = 2
POL(cons(x1, x2)) = 3 + 3·x1 + x2
POL(consSwap(x1, x2)) = 3 + 3·x1 + x2
POL(div(x1, x2)) = 1 + 3·x2
POL(divL(x1, x2)) = x1 + 2·x2
POL(false) = 0
POL(ifminus(x1, x2, x3)) = 3 + 3·x1 + 3·x2
POL(le(x1, x2)) = 0
POL(minus(x1, x2)) = 3 + 3·x1
POL(nil) = 0
POL(s(x1)) = 3
POL(true) = 0
div(0, s(y)) → 0
consSwap(x, xs) → cons(x, xs)
divL(x, cons(y, xs)) → divL(div(x, y), xs)
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
ifminus(true, s(x), y) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
divL(z, cons(x, xs)) → DIVL(z, CONSSWAP(x, xs))
minus(0, y) → 0
divL(x, nil) → x
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
le(0, y) → true
ifminus(false, s(x), y) → s(minus(x, y))
divL(x, nil) → x
div(0, s(y)) → 0
consSwap(x, xs) → cons(x, xs)
divL(x, cons(y, xs)) → divL(div(x, y), xs)
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
ifminus(true, s(x), y) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
divL(z, cons(x, xs)) → DIVL(z, CONSSWAP(x, xs))
minus(0, y) → 0
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
le(0, y) → true
ifminus(false, s(x), y) → s(minus(x, y))
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
divL(x, nil) → x
div(0, s(y)) → 0
consSwap(x, xs) → cons(x, xs)
divL(x, cons(y, xs)) → divL(div(x, y), xs)
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
ifminus(true, s(x), y) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
le(0, y) → true
ifminus(false, s(x), y) → s(minus(x, y))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
minus(0, y) → 0
POL(0) = 2
POL(CONSSWAP(x1, x2)) = 0
POL(DIV(x1, x2)) = 2 + 2·x1·x2 + x2
POL(DIVL(x1, x2)) = 1 + 3·x1 + x2
POL(IFMINUS(x1, x2, x3)) = 2 + x1·x3 + 2·x3
POL(LE(x1, x2)) = 2
POL(MINUS(x1, x2)) = 2·x1 + x1·x2
POL(cons(x1, x2)) = 2 + 3·x2
POL(consSwap(x1, x2)) = 2 + 3·x2
POL(div(x1, x2)) = 3
POL(divL(x1, x2)) = 2 + x1 + 2·x2
POL(false) = 2
POL(ifminus(x1, x2, x3)) = 3 + 3·x2 + 2·x3
POL(le(x1, x2)) = 2·x1 + x2
POL(minus(x1, x2)) = 3 + 3·x1 + 2·x2
POL(nil) = 0
POL(s(x1)) = x1
POL(true) = 0
div(0, s(y)) → 0
consSwap(x, xs) → cons(x, xs)
divL(x, cons(y, xs)) → divL(div(x, y), xs)
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
ifminus(true, s(x), y) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
consSwap(x, cons(y, xs)) → cons(y, consSwap(x, xs))
divL(z, cons(x, xs)) → DIVL(z, CONSSWAP(x, xs))
divL(x, nil) → x
minus(0, y) → 0
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
le(0, y) → true
ifminus(false, s(x), y) → s(minus(x, y))