YES
0 RelTRS
↳1 RelTRStoRelADPProof (⇔, 0 ms)
↳2 RelADPP
↳3 RelADPDepGraphProof (⇔, 0 ms)
↳4 AND
↳5 RelADPP
↳6 RelADPCleverAfsProof (⇒, 54 ms)
↳7 QDP
↳8 MRRProof (⇔, 0 ms)
↳9 QDP
↳10 MRRProof (⇔, 0 ms)
↳11 QDP
↳12 MRRProof (⇔, 0 ms)
↳13 QDP
↳14 PisEmptyProof (⇔, 0 ms)
↳15 YES
↳16 RelADPP
↳17 RelADPCleverAfsProof (⇒, 50 ms)
↳18 QDP
↳19 MRRProof (⇔, 0 ms)
↳20 QDP
↳21 MRRProof (⇔, 0 ms)
↳22 QDP
↳23 MRRProof (⇔, 0 ms)
↳24 QDP
↳25 PisEmptyProof (⇔, 0 ms)
↳26 YES
↳27 RelADPP
↳28 RelADPCleverAfsProof (⇒, 49 ms)
↳29 QDP
↳30 MRRProof (⇔, 0 ms)
↳31 QDP
↳32 MRRProof (⇔, 0 ms)
↳33 QDP
↳34 MRRProof (⇔, 0 ms)
↳35 QDP
↳36 PisEmptyProof (⇔, 0 ms)
↳37 YES
↳38 RelADPP
↳39 RelADPReductionPairProof (⇔, 59 ms)
↳40 RelADPP
↳41 DAbsisEmptyProof (⇔, 0 ms)
↳42 YES
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) → 0
ifminus(false, s(x), y) → s(minus(x, y))
div(0, s(y)) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
divL(x, nil) → x
divL(x, cons(y, xs)) → divL(div(x, y), xs)
divL(z, cons(x, cons(y, xs))) → divL(z, cons(y, cons(x, xs)))
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → LE(x, y)
minus(0, y) → 0
minus(s(x), y) → IFMINUS(le(s(x), y), s(x), y)
minus(s(x), y) → ifminus(LE(s(x), y), s(x), y)
ifminus(true, s(x), y) → 0
ifminus(false, s(x), y) → s(MINUS(x, y))
div(0, s(y)) → 0
div(s(x), s(y)) → s(DIV(minus(x, y), s(y)))
div(s(x), s(y)) → s(div(MINUS(x, y), s(y)))
divL(x, nil) → x
divL(x, cons(y, xs)) → DIVL(div(x, y), xs)
divL(x, cons(y, xs)) → divL(DIV(x, y), xs)
divL(z, cons(x, cons(y, xs))) → DIVL(z, cons(y, cons(x, xs)))
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
4 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 4 subproblems.
le(s(x), s(y)) → LE(x, y)
div(0, s(y)) → 0
divL(x, cons(y, xs)) → divL(div(x, y), xs)
divL(z, cons(x, cons(y, xs))) → divL(z, cons(y, cons(x, xs)))
le(s(x), 0) → false
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
le(0, y) → true
ifminus(false, s(x), y) → s(minus(x, y))
minus(0, y) → 0
divL(x, nil) → x
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
true =
ifminus_3 = 0, 2
div_2 = 1
LE_2 = 1
divL_2 =
le_2 = 0, 1
0 =
minus_2 = 1
cons_2 =
false =
nil =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
LE(x1, x2) = LE(x1)
s(x1) = s(x1)
div(x1, x2) = div(x1)
minus(x1, x2) = x1
ifminus(x1, x2, x3) = x2
le(x1, x2) = le
0 = 0
false = false
true = true
Recursive path order with status [RPO].
Quasi-Precedence:
[LE1, s1, div1, le, 0, false, true]
LE1: multiset
s1: multiset
div1: multiset
le: multiset
0: multiset
false: multiset
true: multiset
LE(s0(x)) → LE(x)
div(00) → 00
divL0(x, cons0(y, xs)) → divL0(div(x), xs)
divL0(z, cons0(x, cons0(y, xs))) → divL0(z, cons0(y, cons0(x, xs)))
le → le
le → false0
minus(s0(x)) → ifminus(s0(x))
ifminus(s0(x)) → 00
div(s0(x)) → s0(div(minus(x)))
le → true0
ifminus(s0(x)) → s0(minus(x))
minus(00) → 00
divL0(x, nil0) → x
divL0(x, cons0(y, xs)) → divL0(div(x), xs)
le → true0
divL0(x, nil0) → x
POL(00) = 0
POL(LE(x1)) = 2·x1
POL(cons0(x1, x2)) = 2 + 2·x1 + x2
POL(div(x1)) = x1
POL(divL0(x1, x2)) = 2 + 2·x1 + x2
POL(false0) = 2
POL(ifminus(x1)) = x1
POL(le) = 2
POL(minus(x1)) = x1
POL(nil0) = 0
POL(s0(x1)) = x1
POL(true0) = 0
LE(s0(x)) → LE(x)
div(00) → 00
divL0(z, cons0(x, cons0(y, xs))) → divL0(z, cons0(y, cons0(x, xs)))
le → le
le → false0
minus(s0(x)) → ifminus(s0(x))
ifminus(s0(x)) → 00
div(s0(x)) → s0(div(minus(x)))
ifminus(s0(x)) → s0(minus(x))
minus(00) → 00
le → false0
POL(00) = 0
POL(LE(x1)) = x1
POL(cons0(x1, x2)) = x1 + x2
POL(div(x1)) = x1
POL(divL0(x1, x2)) = x1 + 2·x2
POL(false0) = 1
POL(ifminus(x1)) = x1
POL(le) = 2
POL(minus(x1)) = x1
POL(s0(x1)) = 2·x1
LE(s0(x)) → LE(x)
div(00) → 00
divL0(z, cons0(x, cons0(y, xs))) → divL0(z, cons0(y, cons0(x, xs)))
le → le
minus(s0(x)) → ifminus(s0(x))
ifminus(s0(x)) → 00
div(s0(x)) → s0(div(minus(x)))
ifminus(s0(x)) → s0(minus(x))
minus(00) → 00
LE(s0(x)) → LE(x)
ifminus(s0(x)) → 00
minus(00) → 00
POL(00) = 0
POL(LE(x1)) = 2·x1
POL(cons0(x1, x2)) = x1 + x2
POL(div(x1)) = 2·x1
POL(divL0(x1, x2)) = x1 + x2
POL(ifminus(x1)) = 1 + x1
POL(le) = 0
POL(minus(x1)) = 1 + x1
POL(s0(x1)) = 2 + x1
div(00) → 00
divL0(z, cons0(x, cons0(y, xs))) → divL0(z, cons0(y, cons0(x, xs)))
le → le
minus(s0(x)) → ifminus(s0(x))
div(s0(x)) → s0(div(minus(x)))
ifminus(s0(x)) → s0(minus(x))
minus(s(x), y) → IFMINUS(le(s(x), y), s(x), y)
ifminus(false, s(x), y) → s(MINUS(x, y))
div(0, s(y)) → 0
divL(x, cons(y, xs)) → divL(div(x, y), xs)
divL(z, cons(x, cons(y, xs))) → divL(z, cons(y, cons(x, xs)))
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
le(0, y) → true
minus(0, y) → 0
divL(x, nil) → x
Furthermore, We use an argument filter [LPAR04].
Filtering:MINUS_2 = 1
true =
ifminus_3 = 0, 2
divL_2 =
IFMINUS_3 = 0, 2
false =
nil =
s_1 =
div_2 = 1
le_2 = 0, 1
0 =
minus_2 = 1
cons_2 =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
MINUS(x1, x2) = MINUS(x1)
s(x1) = s(x1)
IFMINUS(x1, x2, x3) = IFMINUS(x2)
le(x1, x2) = le
false = false
0 = 0
true = true
div(x1, x2) = x1
minus(x1, x2) = x1
ifminus(x1, x2, x3) = x2
Recursive path order with status [RPO].
Quasi-Precedence:
[s1, le, true] > [false, 0] > [MINUS1, IFMINUS1]
MINUS1: multiset
s1: multiset
IFMINUS1: multiset
le: []
false: multiset
0: multiset
true: multiset
MINUS(s0(x)) → IFMINUS(s0(x))
IFMINUS(s0(x)) → MINUS(x)
div(00) → 00
divL0(x, cons0(y, xs)) → divL0(div(x), xs)
divL0(z, cons0(x, cons0(y, xs))) → divL0(z, cons0(y, cons0(x, xs)))
le → le
le → false0
minus(s0(x)) → ifminus(s0(x))
ifminus(s0(x)) → 00
div(s0(x)) → s0(div(minus(x)))
le → true0
ifminus(s0(x)) → s0(minus(x))
minus(00) → 00
divL0(x, nil0) → x
divL0(x, cons0(y, xs)) → divL0(div(x), xs)
le → false0
divL0(x, nil0) → x
POL(00) = 0
POL(IFMINUS(x1)) = x1
POL(MINUS(x1)) = x1
POL(cons0(x1, x2)) = 2 + x1 + x2
POL(div(x1)) = x1
POL(divL0(x1, x2)) = 2 + 2·x1 + x2
POL(false0) = 0
POL(ifminus(x1)) = x1
POL(le) = 2
POL(minus(x1)) = x1
POL(nil0) = 0
POL(s0(x1)) = x1
POL(true0) = 2
MINUS(s0(x)) → IFMINUS(s0(x))
IFMINUS(s0(x)) → MINUS(x)
div(00) → 00
divL0(z, cons0(x, cons0(y, xs))) → divL0(z, cons0(y, cons0(x, xs)))
le → le
minus(s0(x)) → ifminus(s0(x))
ifminus(s0(x)) → 00
div(s0(x)) → s0(div(minus(x)))
le → true0
ifminus(s0(x)) → s0(minus(x))
minus(00) → 00
le → true0
POL(00) = 0
POL(IFMINUS(x1)) = x1
POL(MINUS(x1)) = x1
POL(cons0(x1, x2)) = x1 + x2
POL(div(x1)) = 2·x1
POL(divL0(x1, x2)) = x1 + 2·x2
POL(ifminus(x1)) = x1
POL(le) = 2
POL(minus(x1)) = x1
POL(s0(x1)) = x1
POL(true0) = 1
MINUS(s0(x)) → IFMINUS(s0(x))
IFMINUS(s0(x)) → MINUS(x)
div(00) → 00
divL0(z, cons0(x, cons0(y, xs))) → divL0(z, cons0(y, cons0(x, xs)))
le → le
minus(s0(x)) → ifminus(s0(x))
ifminus(s0(x)) → 00
div(s0(x)) → s0(div(minus(x)))
ifminus(s0(x)) → s0(minus(x))
minus(00) → 00
MINUS(s0(x)) → IFMINUS(s0(x))
IFMINUS(s0(x)) → MINUS(x)
POL(00) = 2
POL(IFMINUS(x1)) = x1
POL(MINUS(x1)) = 1 + 2·x1
POL(cons0(x1, x2)) = 2·x1 + x2
POL(div(x1)) = x1
POL(divL0(x1, x2)) = x1 + 2·x2
POL(ifminus(x1)) = x1
POL(le) = 0
POL(minus(x1)) = x1
POL(s0(x1)) = 2 + 2·x1
div(00) → 00
divL0(z, cons0(x, cons0(y, xs))) → divL0(z, cons0(y, cons0(x, xs)))
le → le
minus(s0(x)) → ifminus(s0(x))
ifminus(s0(x)) → 00
div(s0(x)) → s0(div(minus(x)))
ifminus(s0(x)) → s0(minus(x))
minus(00) → 00
div(s(x), s(y)) → s(DIV(minus(x, y), s(y)))
div(0, s(y)) → 0
divL(x, cons(y, xs)) → divL(div(x, y), xs)
divL(z, cons(x, cons(y, xs))) → divL(z, cons(y, cons(x, xs)))
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
le(0, y) → true
ifminus(false, s(x), y) → s(minus(x, y))
minus(0, y) → 0
divL(x, nil) → x
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
true =
ifminus_3 = 0, 2
div_2 = 1
divL_2 =
0 =
le_2 = 0, 1
minus_2 = 1
cons_2 =
DIV_2 = 1
false =
nil =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
DIV(x1, x2) = DIV(x1)
s(x1) = s(x1)
minus(x1, x2) = x1
ifminus(x1, x2, x3) = x2
le(x1, x2) = le
0 = 0
false = false
true = true
div(x1, x2) = div(x1)
Recursive path order with status [RPO].
Quasi-Precedence:
[le, true] > [DIV1, s1, false] > 0
div1 > [DIV1, s1, false] > 0
DIV1: [1]
s1: multiset
le: []
0: multiset
false: multiset
true: multiset
div1: multiset
DIV(s0(x)) → DIV(minus(x))
div(00) → 00
divL0(x, cons0(y, xs)) → divL0(div(x), xs)
divL0(z, cons0(x, cons0(y, xs))) → divL0(z, cons0(y, cons0(x, xs)))
le → le
le → false0
minus(s0(x)) → ifminus(s0(x))
ifminus(s0(x)) → 00
div(s0(x)) → s0(div(minus(x)))
le → true0
ifminus(s0(x)) → s0(minus(x))
minus(00) → 00
divL0(x, nil0) → x
divL0(x, cons0(y, xs)) → divL0(div(x), xs)
le → true0
divL0(x, nil0) → x
POL(00) = 0
POL(DIV(x1)) = x1
POL(cons0(x1, x2)) = 2 + 2·x1 + x2
POL(div(x1)) = x1
POL(divL0(x1, x2)) = 2 + 2·x1 + x2
POL(false0) = 2
POL(ifminus(x1)) = x1
POL(le) = 2
POL(minus(x1)) = x1
POL(nil0) = 0
POL(s0(x1)) = x1
POL(true0) = 0
DIV(s0(x)) → DIV(minus(x))
div(00) → 00
divL0(z, cons0(x, cons0(y, xs))) → divL0(z, cons0(y, cons0(x, xs)))
le → le
le → false0
minus(s0(x)) → ifminus(s0(x))
ifminus(s0(x)) → 00
div(s0(x)) → s0(div(minus(x)))
ifminus(s0(x)) → s0(minus(x))
minus(00) → 00
le → false0
POL(00) = 0
POL(DIV(x1)) = x1
POL(cons0(x1, x2)) = x1 + x2
POL(div(x1)) = x1
POL(divL0(x1, x2)) = x1 + 2·x2
POL(false0) = 1
POL(ifminus(x1)) = x1
POL(le) = 2
POL(minus(x1)) = x1
POL(s0(x1)) = 2·x1
DIV(s0(x)) → DIV(minus(x))
div(00) → 00
divL0(z, cons0(x, cons0(y, xs))) → divL0(z, cons0(y, cons0(x, xs)))
le → le
minus(s0(x)) → ifminus(s0(x))
ifminus(s0(x)) → 00
div(s0(x)) → s0(div(minus(x)))
ifminus(s0(x)) → s0(minus(x))
minus(00) → 00
DIV(s0(x)) → DIV(minus(x))
div(00) → 00
ifminus(s0(x)) → 00
minus(00) → 00
POL(00) = 1
POL(DIV(x1)) = x1
POL(cons0(x1, x2)) = 2·x1 + x2
POL(div(x1)) = 1 + 2·x1
POL(divL0(x1, x2)) = x1 + 2·x2
POL(ifminus(x1)) = 1 + x1
POL(le) = 0
POL(minus(x1)) = 1 + x1
POL(s0(x1)) = 2 + x1
divL0(z, cons0(x, cons0(y, xs))) → divL0(z, cons0(y, cons0(x, xs)))
le → le
minus(s0(x)) → ifminus(s0(x))
div(s0(x)) → s0(div(minus(x)))
ifminus(s0(x)) → s0(minus(x))
divL(x, cons(y, xs)) → DIVL(div(x, y), xs)
div(0, s(y)) → 0
divL(x, cons(y, xs)) → divL(div(x, y), xs)
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
le(0, y) → true
ifminus(false, s(x), y) → s(minus(x, y))
divL(z, cons(x, cons(y, xs))) → DIVL(z, cons(y, cons(x, xs)))
minus(0, y) → 0
divL(x, nil) → x
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
divL(x, cons(y, xs)) → DIVL(div(x, y), xs)
div(0, s(y)) → 0
divL(x, cons(y, xs)) → divL(div(x, y), xs)
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
le(0, y) → true
ifminus(false, s(x), y) → s(minus(x, y))
minus(0, y) → 0
divL(x, nil) → x
POL(0) = 0
POL(DIV(x1, x2)) = 2
POL(DIVL(x1, x2)) = 2 + 3·x1 + 3·x2
POL(IFMINUS(x1, x2, x3)) = 2·x1 + x1·x2·x3 + 2·x3
POL(LE(x1, x2)) = x2
POL(MINUS(x1, x2)) = x1·x2
POL(cons(x1, x2)) = 3 + 3·x1 + x2
POL(div(x1, x2)) = 2 + 2·x2
POL(divL(x1, x2)) = 2 + 2·x1 + 2·x2
POL(false) = 0
POL(ifminus(x1, x2, x3)) = 3·x1 + 3·x2
POL(le(x1, x2)) = 0
POL(minus(x1, x2)) = 3·x1
POL(nil) = 0
POL(s(x1)) = x1
POL(true) = 0
div(0, s(y)) → 0
divL(x, cons(y, xs)) → divL(div(x, y), xs)
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
minus(s(x), y) → ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
le(0, y) → true
ifminus(false, s(x), y) → s(minus(x, y))
divL(z, cons(x, cons(y, xs))) → DIVL(z, cons(y, cons(x, xs)))
minus(0, y) → 0
divL(x, nil) → x