YES
0 RelTRS
↳1 RelTRS S Cleaner (⇔, 0 ms)
↳2 RelTRS
↳3 RelTRStoRelADPProof (⇔, 0 ms)
↳4 RelADPP
↳5 RelADPDepGraphProof (⇔, 0 ms)
↳6 AND
↳7 RelADPP
↳8 RelADPCleverAfsProof (⇒, 51 ms)
↳9 QDP
↳10 MRRProof (⇔, 0 ms)
↳11 QDP
↳12 PisEmptyProof (⇔, 0 ms)
↳13 YES
↳14 RelADPP
↳15 RelADPCleverAfsProof (⇒, 39 ms)
↳16 QDP
↳17 MRRProof (⇔, 0 ms)
↳18 QDP
↳19 PisEmptyProof (⇔, 0 ms)
↳20 YES
↳21 RelADPP
↳22 RelADPReductionPairProof (⇔, 50 ms)
↳23 RelADPP
↳24 DAbsisEmptyProof (⇔, 0 ms)
↳25 YES
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
div(0, s(y)) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
half(s(s(x))) → div(x, s(s(0)))
gen(s(x), b) → gen(s(x), b)
gen(s(x), b) → gen(x, a)
gen(0, a) → gen(0, a)
gen(s(x), a) → c(s(s(0)), gen(s(x), b))
gen(s(x), a) → c(half(s(s(0))), gen(x, a))
gen(s(x), b) → gen(s(x), b)
gen(0, a) → gen(0, a)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
div(0, s(y)) → 0
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
half(s(s(x))) → div(x, s(s(0)))
gen(s(x), b) → gen(x, a)
gen(s(x), a) → c(s(s(0)), gen(s(x), b))
gen(s(x), a) → c(half(s(s(0))), gen(x, a))
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
minus(x, 0) → x
minus(s(x), s(y)) → MINUS(x, y)
div(0, s(y)) → 0
div(s(x), s(y)) → s(DIV(minus(x, y), s(y)))
div(s(x), s(y)) → s(div(MINUS(x, y), s(y)))
half(s(s(x))) → DIV(x, s(s(0)))
gen(s(x), b) → GEN(x, a)
gen(s(x), a) → c(s(s(0)), GEN(s(x), b))
gen(s(x), a) → c(HALF(s(s(0))), GEN(x, a))
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
2 SCCs with nodes from P_abs,
1 Lasso,
Result: This relative DT problem is equivalent to 3 subproblems.
minus(s(x), s(y)) → MINUS(x, y)
div(0, s(y)) → 0
gen(s(x), b) → gen(x, a)
half(s(s(x))) → div(x, s(s(0)))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
gen(s(x), a) → c(s(s(0)), gen(s(x), b))
minus(x, 0) → x
gen(s(x), a) → c(half(s(s(0))), gen(x, a))
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
MINUS_2 = 0
a =
b =
c_2 =
half_1 =
div_2 =
0 =
minus_2 = 1
gen_2 =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
MINUS(x1, x2) = MINUS(x2)
s(x1) = s(x1)
div(x1, x2) = div(x1, x2)
minus(x1, x2) = x1
0 = 0
Recursive path order with status [RPO].
Quasi-Precedence:
MINUS1 > s1
div2 > s1
0 > s1
MINUS1: [1]
s1: multiset
div2: [2,1]
0: multiset
MINUS(s0(y)) → MINUS(y)
div0(00, s0(y)) → 00
gen0(s0(x), b0) → gen0(x, a0)
half0(s0(s0(x))) → div0(x, s0(s0(00)))
div0(s0(x), s0(y)) → s0(div0(minus(x), s0(y)))
gen0(s0(x), a0) → c0(s0(s0(00)), gen0(s0(x), b0))
minus(s0(x)) → minus(x)
minus(x) → x
gen0(s0(x), a0) → c0(half0(s0(s0(00))), gen0(x, a0))
MINUS(s0(y)) → MINUS(y)
div0(00, s0(y)) → 00
minus(s0(x)) → minus(x)
POL(00) = 0
POL(MINUS(x1)) = x1
POL(a0) = 1
POL(b0) = 0
POL(c0(x1, x2)) = x1 + x2
POL(div0(x1, x2)) = x1 + x2
POL(gen0(x1, x2)) = 1 + 2·x1 + 2·x2
POL(half0(x1)) = x1
POL(minus(x1)) = x1
POL(s0(x1)) = 1 + x1
gen0(s0(x), b0) → gen0(x, a0)
half0(s0(s0(x))) → div0(x, s0(s0(00)))
div0(s0(x), s0(y)) → s0(div0(minus(x), s0(y)))
gen0(s0(x), a0) → c0(s0(s0(00)), gen0(s0(x), b0))
minus(x) → x
gen0(s0(x), a0) → c0(half0(s0(s0(00))), gen0(x, a0))
div(s(x), s(y)) → s(DIV(minus(x, y), s(y)))
div(0, s(y)) → 0
gen(s(x), b) → gen(x, a)
half(s(s(x))) → div(x, s(s(0)))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
gen(s(x), a) → c(s(s(0)), gen(s(x), b))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
gen(s(x), a) → c(half(s(s(0))), gen(x, a))
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
a =
b =
c_2 =
half_1 =
div_2 = 1
0 =
minus_2 = 1
gen_2 =
DIV_2 =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
DIV(x1, x2) = DIV(x1, x2)
s(x1) = s(x1)
minus(x1, x2) = x1
0 = 0
div(x1, x2) = div(x1)
Recursive path order with status [RPO].
Quasi-Precedence:
0 > [DIV2, s1, div1]
DIV2: multiset
s1: multiset
0: multiset
div1: multiset
DIV0(s0(x), s0(y)) → DIV0(minus(x), s0(y))
div(00) → 00
gen0(s0(x), b0) → gen0(x, a0)
half0(s0(s0(x))) → div(x)
div(s0(x)) → s0(div(minus(x)))
gen0(s0(x), a0) → c0(s0(s0(00)), gen0(s0(x), b0))
minus(s0(x)) → minus(x)
minus(x) → x
gen0(s0(x), a0) → c0(half0(s0(s0(00))), gen0(x, a0))
DIV0(s0(x), s0(y)) → DIV0(minus(x), s0(y))
half0(s0(s0(x))) → div(x)
minus(s0(x)) → minus(x)
POL(00) = 0
POL(DIV0(x1, x2)) = x1 + x2
POL(a0) = 1
POL(b0) = 0
POL(c0(x1, x2)) = x1 + x2
POL(div(x1)) = x1
POL(gen0(x1, x2)) = 2 + 2·x1 + 2·x2
POL(half0(x1)) = x1
POL(minus(x1)) = x1
POL(s0(x1)) = 1 + x1
div(00) → 00
gen0(s0(x), b0) → gen0(x, a0)
div(s0(x)) → s0(div(minus(x)))
gen0(s0(x), a0) → c0(s0(s0(00)), gen0(s0(x), b0))
minus(x) → x
gen0(s0(x), a0) → c0(half0(s0(s0(00))), gen0(x, a0))
half(s(s(x))) → DIV(x, s(s(0)))
div(0, s(y)) → 0
gen(s(x), a) → c(s(s(0)), GEN(s(x), b))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
gen(s(x), b) → GEN(x, a)
gen(s(x), a) → c(HALF(s(s(0))), GEN(x, a))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:
half(s(s(x))) → DIV(x, s(s(0)))
div(0, s(y)) → 0
gen(s(x), b) → GEN(x, a)
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
POL(0) = 0
POL(DIV(x1, x2)) = 0
POL(GEN(x1, x2)) = 2·x1 + 3·x2
POL(HALF(x1)) = x1
POL(MINUS(x1, x2)) = 2 + 2·x1·x2
POL(a) = 2
POL(b) = 2
POL(c(x1, x2)) = 0
POL(div(x1, x2)) = 2·x1
POL(gen(x1, x2)) = 3·x2
POL(half(x1)) = 2 + 3·x1
POL(minus(x1, x2)) = x1
POL(s(x1)) = 3 + x1
div(0, s(y)) → 0
gen(s(x), a) → c(s(s(0)), GEN(s(x), b))
gen(s(x), b) → gen(x, a)
half(s(s(x))) → div(x, s(s(0)))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
gen(s(x), a) → c(HALF(s(s(0))), GEN(x, a))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x