YES Termination proof of AProVE_24_conf_1.ari

(0) Obligation:

Relative term rewrite system:
The relative TRS consists of the following R rules:

le(s(s(x)), s(s(y))) → le(s(x), s(y))
le(s(s(x)), s(s(y))) → le(x, y)

The relative TRS consists of the following S rules:

gcd(0, y) → y
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
minus(x, s(y)) → pred(minus(x, y))
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
gcd(s(x), 0) → s(x)
le(0, y) → true
minus(x, 0) → x
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))
if_gcd(error, x, y) → if_gcd(error, 0, 0)
pred(s(x)) → x

(1) RelTRSSCleanerProof (SOUND transformation)

We have moved all duplicating rules from S to R → Duplicating rules:

gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

(2) Obligation:

Relative term rewrite system:
The relative TRS consists of the following R rules:

le(s(s(x)), s(s(y))) → le(s(x), s(y))
le(s(s(x)), s(s(y))) → le(x, y)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

The relative TRS consists of the following S rules:

gcd(0, y) → y
minus(x, s(y)) → pred(minus(x, y))
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
gcd(s(x), 0) → s(x)
le(0, y) → true
minus(x, 0) → x
if_gcd(error, x, y) → if_gcd(error, 0, 0)
pred(s(x)) → x

(3) RelTRStoRelADPProof (EQUIVALENT transformation)

We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].

(4) Obligation:

Relative ADP Problem with
absolute ADPs:

le(s(s(x)), s(s(y))) → LE(s(x), s(y))
le(s(s(x)), s(s(y))) → LE(x, y)
gcd(s(x), s(y)) → IF_GCD(le(y, x), s(x), s(y))
gcd(s(x), s(y)) → if_gcd(LE(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → GCD(minus(x, y), s(y))
if_gcd(true, s(x), s(y)) → gcd(MINUS(x, y), s(y))
if_gcd(false, s(x), s(y)) → GCD(minus(y, x), s(x))
if_gcd(false, s(x), s(y)) → gcd(MINUS(y, x), s(x))

and relative ADPs:

gcd(0, y) → y
minus(x, s(y)) → PRED(MINUS(x, y))
le(s(x), s(y)) → LE(x, y)
le(s(x), 0) → false
gcd(s(x), 0) → s(x)
le(0, y) → true
minus(x, 0) → x
if_gcd(error, x, y) → IF_GCD(error, 0, 0)
pred(s(x)) → x

(5) RelADPDepGraphProof (EQUIVALENT transformation)

We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
2 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 2 subproblems.

(6) Complex Obligation (AND)

(7) Obligation:

Relative ADP Problem with
absolute ADPs:

le(s(s(x)), s(s(y))) → LE(s(x), s(y))
le(s(s(x)), s(s(y))) → LE(x, y)

and relative ADPs:

gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
gcd(0, y) → y
minus(x, s(y)) → pred(minus(x, y))
le(s(x), 0) → false
gcd(s(x), 0) → s(x)
le(0, y) → true
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
minus(x, 0) → x
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))
if_gcd(error, x, y) → if_gcd(error, 0, 0)
le(s(x), s(y)) → LE(x, y)
pred(s(x)) → x

(8) RelADPReductionPairProof (EQUIVALENT transformation)

We use the reduction pair processor [IJCAR24].
The following rules can be oriented strictly (l^# > ann(r))
and therefore we can remove all of its annotations in the right-hand side:
Absolute ADPs:


le(s(s(x)), s(s(y))) → LE(s(x), s(y))
le(s(s(x)), s(s(y))) → LE(x, y)

Relative ADPs:

gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
gcd(0, y) → y
minus(x, s(y)) → pred(minus(x, y))
le(s(x), 0) → false
gcd(s(x), 0) → s(x)
le(0, y) → true
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
minus(x, 0) → x
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))
if_gcd(error, x, y) → if_gcd(error, 0, 0)
le(s(x), s(y)) → LE(x, y)
pred(s(x)) → x


No rules with annotations remain.
Ordered with Polynomial interpretation [POLO]:

POL(0) = 0   
POL(GCD(x1, x2)) = 2   
POL(IF_GCD(x1, x2, x3)) = 2   
POL(LE(x1, x2)) = 2 + x1   
POL(MINUS(x1, x2)) = 2·x1 + 2·x1·x2   
POL(PRED(x1)) = 2   
POL(error) = 0   
POL(false) = 0   
POL(gcd(x1, x2)) = 2 + 3·x1 + 2·x2   
POL(if_gcd(x1, x2, x3)) = 2 + 3·x1 + 2·x2 + 2·x3   
POL(le(x1, x2)) = 0   
POL(minus(x1, x2)) = x1   
POL(pred(x1)) = x1   
POL(s(x1)) = 1 + 2·x1   
POL(true) = 0   

(9) Obligation:

Relative ADP Problem with
No absolute ADPs, and relative ADPs:

le(s(s(x)), s(s(y))) → le(s(x), s(y))
le(s(x), s(y)) → le(x, y)
le(s(s(x)), s(s(y))) → le(x, y)
le(s(x), 0) → false
gcd(s(x), 0) → s(x)
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))
if_gcd(error, x, y) → if_gcd(error, 0, 0)
pred(s(x)) → x
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
gcd(0, y) → y
minus(x, s(y)) → pred(minus(x, y))
le(0, y) → true
minus(x, 0) → x

(10) DAbsisEmptyProof (EQUIVALENT transformation)

The relative ADP Problem has an empty P_abs. Hence, no infinite chain exists.

(11) YES

(12) Obligation:

Relative ADP Problem with
absolute ADPs:

if_gcd(true, s(x), s(y)) → GCD(minus(x, y), s(y))
gcd(s(x), s(y)) → IF_GCD(le(y, x), s(x), s(y))
if_gcd(false, s(x), s(y)) → GCD(minus(y, x), s(x))

and relative ADPs:

le(s(s(x)), s(s(y))) → le(s(x), s(y))
le(s(x), s(y)) → le(x, y)
le(s(s(x)), s(s(y))) → le(x, y)
le(s(x), 0) → false
gcd(s(x), 0) → s(x)
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))
if_gcd(error, x, y) → if_gcd(error, 0, 0)
pred(s(x)) → x
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
gcd(0, y) → y
minus(x, s(y)) → pred(minus(x, y))
le(0, y) → true
minus(x, 0) → x

(13) RelADPCleverAfsProof (SOUND transformation)

We use the first derelatifying processor [IJCAR24].
There are no annotations in relative ADPs, so the relative ADP problem can be transformed into a non-relative DP problem.

Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 = true = IF_GCD_3 = 0 error = gcd_2 = le_2 = 0, 1 0 = pred_1 = if_gcd_3 = 0 minus_2 = 1 GCD_2 = false =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
IF_GCD(x1, x2, x3)  =  IF_GCD(x2, x3)
false  =  false
s(x1)  =  s(x1)
GCD(x1, x2)  =  GCD(x1, x2)
minus(x1, x2)  =  minus(x1)
le(x1, x2)  =  le
true  =  true
pred(x1)  =  x1
0  =  0
gcd(x1, x2)  =  gcd(x1, x2)
if_gcd(x1, x2, x3)  =  if_gcd(x2, x3)
error  =  error

Recursive path order with status [RPO].
Quasi-Precedence:

[IFGCD2, GCD2] > s1 > [false, minus1, le, true] > [gcd2, ifgcd2] > error > 0

Status:
IFGCD2: multiset
false: multiset
s1: [1]
GCD2: multiset
minus1: [1]
le: multiset
true: multiset
0: multiset
gcd2: multiset
ifgcd2: multiset
error: multiset

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF_GCD(s0(x), s0(y)) → GCD0(minus(y), s0(x))
GCD0(s0(x), s0(y)) → IF_GCD(s0(x), s0(y))
IF_GCD(s0(x), s0(y)) → GCD0(minus(x), s0(y))

The TRS R consists of the following rules:

lele
lefalse0
gcd0(s0(x), 00) → s0(x)
if_gcd(s0(x), s0(y)) → gcd0(minus(x), s0(y))
if_gcd(s0(x), s0(y)) → gcd0(minus(y), s0(x))
if_gcd(x, y) → if_gcd(00, 00)
pred0(s0(x)) → x
gcd0(s0(x), s0(y)) → if_gcd(s0(x), s0(y))
gcd0(00, y) → y
minus(x) → pred0(minus(x))
letrue0
minus(x) → x

Q is empty.
We have to consider all (P,Q,R)-chains.

(15) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

GCD0(s0(x), s0(y)) → IF_GCD(s0(x), s0(y))

Strictly oriented rules of the TRS R:

lefalse0
gcd0(s0(x), 00) → s0(x)
if_gcd(s0(x), s0(y)) → gcd0(minus(x), s0(y))
if_gcd(s0(x), s0(y)) → gcd0(minus(y), s0(x))
pred0(s0(x)) → x
letrue0
minus(x) → x

Used ordering: Polynomial interpretation [POLO]:

POL(00) = 0   
POL(GCD0(x1, x2)) = 2 + 2·x1 + x2   
POL(IF_GCD(x1, x2)) = 2·x1 + x2   
POL(false0) = 1   
POL(gcd0(x1, x2)) = 2·x1 + x2   
POL(if_gcd(x1, x2)) = 2·x1 + x2   
POL(le) = 2   
POL(minus(x1)) = 1 + x1   
POL(pred0(x1)) = x1   
POL(s0(x1)) = 2 + 2·x1   
POL(true0) = 0   

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF_GCD(s0(x), s0(y)) → GCD0(minus(y), s0(x))
IF_GCD(s0(x), s0(y)) → GCD0(minus(x), s0(y))

The TRS R consists of the following rules:

lele
if_gcd(x, y) → if_gcd(00, 00)
gcd0(s0(x), s0(y)) → if_gcd(s0(x), s0(y))
gcd0(00, y) → y
minus(x) → pred0(minus(x))

Q is empty.
We have to consider all (P,Q,R)-chains.

(17) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(18) TRUE