Input TRS: 1: from(X) -> cons(X,from(s(X))) 2: |2ndspos|(|0|(),Z) -> rnil() 3: |2ndspos|(s(N),cons(X,Z)) -> |2ndspos|(s(N),cons2(X,Z)) 4: |2ndspos|(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),|2ndsneg|(N,Z)) 5: |2ndsneg|(|0|(),Z) -> rnil() 6: |2ndsneg|(s(N),cons(X,Z)) -> |2ndsneg|(s(N),cons2(X,Z)) 7: |2ndsneg|(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),|2ndspos|(N,Z)) 8: pi(X) -> |2ndspos|(X,from(|0|())) 9: plus(|0|(),Y) -> Y 10: plus(s(X),Y) -> s(plus(X,Y)) 11: times(|0|(),Y) -> |0|() 12: times(s(X),Y) -> plus(Y,times(X,Y)) 13: square(X) -> times(X,X) Number of strict rules: 13 Direct Order(PosReal,>,Poly) ... failed. Freezing |2ndspos| |2ndsneg| 1: from(X) -> cons(X,from(s(X))) 2: |2ndspos|❆1_|0|(Z) -> rnil() 3: |2ndspos|❆1_s(N,cons(X,Z)) -> |2ndspos|❆1_s(N,cons2(X,Z)) 4: |2ndspos|❆1_s(N,cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),|2ndsneg|(N,Z)) 5: |2ndsneg|❆1_|0|(Z) -> rnil() 6: |2ndsneg|❆1_s(N,cons(X,Z)) -> |2ndsneg|❆1_s(N,cons2(X,Z)) 7: |2ndsneg|❆1_s(N,cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),|2ndspos|(N,Z)) 8: pi(X) -> |2ndspos|(X,from(|0|())) 9: plus(|0|(),Y) -> Y 10: plus(s(X),Y) -> s(plus(X,Y)) 11: times(|0|(),Y) -> |0|() 12: times(s(X),Y) -> plus(Y,times(X,Y)) 13: square(X) -> times(X,X) 14: |2ndsneg|(|0|(),_1) ->= |2ndsneg|❆1_|0|(_1) 15: |2ndsneg|(s(_1),_2) ->= |2ndsneg|❆1_s(_1,_2) 16: |2ndspos|(|0|(),_1) ->= |2ndspos|❆1_|0|(_1) 17: |2ndspos|(s(_1),_2) ->= |2ndspos|❆1_s(_1,_2) Number of strict rules: 13 Direct Order(PosReal,>,Poly) ... failed. Dependency Pairs: #1: #|2ndsneg|❆1_s(N,cons(X,Z)) -> #|2ndsneg|❆1_s(N,cons2(X,Z)) #2: #square(X) -> #times(X,X) #3: #times(s(X),Y) -> #plus(Y,times(X,Y)) #4: #times(s(X),Y) -> #times(X,Y) #5: #|2ndsneg|(|0|(),_1) ->? #|2ndsneg|❆1_|0|(_1) #6: #|2ndsneg|❆1_s(N,cons2(X,cons(Y,Z))) -> #|2ndspos|(N,Z) #7: #plus(s(X),Y) -> #plus(X,Y) #8: #|2ndspos|(s(_1),_2) ->? #|2ndspos|❆1_s(_1,_2) #9: #|2ndspos|(|0|(),_1) ->? #|2ndspos|❆1_|0|(_1) #10: #|2ndspos|❆1_s(N,cons(X,Z)) -> #|2ndspos|❆1_s(N,cons2(X,Z)) #11: #from(X) -> #from(s(X)) #12: #pi(X) -> #|2ndspos|(X,from(|0|())) #13: #pi(X) -> #from(|0|()) #14: #|2ndsneg|(s(_1),_2) ->? #|2ndsneg|❆1_s(_1,_2) #15: #|2ndspos|❆1_s(N,cons2(X,cons(Y,Z))) -> #|2ndsneg|(N,Z) Number of SCCs: 4, DPs: 9, edges: 11 SCC { #11 } Removing DPs: Order(PosReal,>,Sum)... Order(PosReal,>,Max)... QLPOpS... Order(PosReal,>,MaxSum)... QWPOpS(PosReal,>,MaxSum)... Order(PosReal,>,Sum-Sum; PosReal,≥,Sum-Sum)... Order(PosReal,>,Sum-Sum; NegReal,≥,Sum)... Order(PosReal,>,MaxSum-Sum; NegReal,≥,Sum)... failed. Removing edges: failed. Finding a loop... found. #from(X) -#11-> #from(s(X)) --->* #from(s(X)) Looping with: [ X := s(X); ] NO