Input TRS: 1: sortSu(circ(sortSu(cons(te(a),sortSu(s))),sortSu(t))) -> sortSu(cons(te(msubst(te(a),sortSu(t))),sortSu(circ(sortSu(s),sortSu(t))))) 2: sortSu(circ(sortSu(cons(sop(lift()),sortSu(s))),sortSu(cons(te(a),sortSu(t))))) -> sortSu(cons(te(a),sortSu(circ(sortSu(s),sortSu(t))))) 3: sortSu(circ(sortSu(cons(sop(lift()),sortSu(s))),sortSu(cons(sop(lift()),sortSu(t))))) -> sortSu(cons(sop(lift()),sortSu(circ(sortSu(s),sortSu(t))))) 4: sortSu(circ(sortSu(circ(sortSu(s),sortSu(t))),sortSu(u))) -> sortSu(circ(sortSu(s),sortSu(circ(sortSu(t),sortSu(u))))) 5: sortSu(circ(sortSu(s),sortSu(id()))) -> sortSu(s) 6: sortSu(circ(sortSu(id()),sortSu(s))) -> sortSu(s) 7: sortSu(circ(sortSu(cons(sop(lift()),sortSu(s))),sortSu(circ(sortSu(cons(sop(lift()),sortSu(t))),sortSu(u))))) -> sortSu(circ(sortSu(cons(sop(lift()),sortSu(circ(sortSu(s),sortSu(t))))),sortSu(u))) 8: te(subst(te(a),sortSu(id()))) -> te(a) 9: te(msubst(te(a),sortSu(id()))) -> te(a) 10: te(msubst(te(msubst(te(a),sortSu(s))),sortSu(t))) -> te(msubst(te(a),sortSu(circ(sortSu(s),sortSu(t))))) Number of strict rules: 10 Direct Order(PosReal,>,Poly) ... failed. Freezing ... failed. Dependency Pairs: #1: #sortSu(circ(sortSu(cons(sop(lift()),sortSu(s))),sortSu(cons(te(a),sortSu(t))))) -> #sortSu(cons(te(a),sortSu(circ(sortSu(s),sortSu(t))))) #2: #sortSu(circ(sortSu(cons(sop(lift()),sortSu(s))),sortSu(cons(te(a),sortSu(t))))) -> #sortSu(circ(sortSu(s),sortSu(t))) #3: #sortSu(circ(sortSu(cons(sop(lift()),sortSu(s))),sortSu(circ(sortSu(cons(sop(lift()),sortSu(t))),sortSu(u))))) -> #sortSu(circ(sortSu(cons(sop(lift()),sortSu(circ(sortSu(s),sortSu(t))))),sortSu(u))) #4: #sortSu(circ(sortSu(cons(sop(lift()),sortSu(s))),sortSu(circ(sortSu(cons(sop(lift()),sortSu(t))),sortSu(u))))) -> #sortSu(cons(sop(lift()),sortSu(circ(sortSu(s),sortSu(t))))) #5: #sortSu(circ(sortSu(cons(sop(lift()),sortSu(s))),sortSu(circ(sortSu(cons(sop(lift()),sortSu(t))),sortSu(u))))) -> #sortSu(circ(sortSu(s),sortSu(t))) #6: #te(msubst(te(msubst(te(a),sortSu(s))),sortSu(t))) -> #te(msubst(te(a),sortSu(circ(sortSu(s),sortSu(t))))) #7: #te(msubst(te(msubst(te(a),sortSu(s))),sortSu(t))) -> #sortSu(circ(sortSu(s),sortSu(t))) #8: #sortSu(circ(sortSu(cons(sop(lift()),sortSu(s))),sortSu(cons(sop(lift()),sortSu(t))))) -> #sortSu(cons(sop(lift()),sortSu(circ(sortSu(s),sortSu(t))))) #9: #sortSu(circ(sortSu(cons(sop(lift()),sortSu(s))),sortSu(cons(sop(lift()),sortSu(t))))) -> #sortSu(circ(sortSu(s),sortSu(t))) #10: #sortSu(circ(sortSu(cons(te(a),sortSu(s))),sortSu(t))) -> #sortSu(cons(te(msubst(te(a),sortSu(t))),sortSu(circ(sortSu(s),sortSu(t))))) #11: #sortSu(circ(sortSu(cons(te(a),sortSu(s))),sortSu(t))) -> #te(msubst(te(a),sortSu(t))) #12: #sortSu(circ(sortSu(cons(te(a),sortSu(s))),sortSu(t))) -> #sortSu(circ(sortSu(s),sortSu(t))) #13: #sortSu(circ(sortSu(circ(sortSu(s),sortSu(t))),sortSu(u))) -> #sortSu(circ(sortSu(s),sortSu(circ(sortSu(t),sortSu(u))))) #14: #sortSu(circ(sortSu(circ(sortSu(s),sortSu(t))),sortSu(u))) -> #sortSu(circ(sortSu(t),sortSu(u))) Number of SCCs: 1, DPs: 10, edges: 64 SCC { #2 #3 #5..7 #9 #11..14 } Removing DPs: Order(PosReal,>,Sum)... Order(PosReal,>,Max)... QLPOpS... Order(PosReal,>,MaxSum)... succeeded. sortSu(x1) weight: max{0, 118196 + x1} sop(x1) weight: 0 #te(x1) weight: max{0, (- (/ 1 4)) + x1} #sortSu(x1) weight: max{0, -23639 + x1} lift() weight: (/ 1 4) msubst(x1,x2) weight: max{0, (/ 1087407 4) + x2 + x1} subst(x1,x2) weight: max{0, 283671 + x1} te(x1) weight: max{0, -283671 + x1} cons(x1,x2) weight: max{0, (/ 638259 2) + x1, 59098 + x2} id() weight: (/ 1 4) circ(x1,x2) weight: max{0, (- (/ 520061 4)) + x2 + x1} Usable rules: { 1..10 } Removed DPs: #2 #3 #5 #7 #9 #11 #12 #14 Number of SCCs: 2, DPs: 2, edges: 2 SCC { #6 } Removing DPs: Order(PosReal,>,Sum)... succeeded. sortSu(x1) weight: (/ 1 4) sop(x1) weight: (/ 1 4) #te(x1) weight: x1 #sortSu(x1) weight: (/ 1 2) lift() weight: 0 msubst(x1,x2) weight: x1 subst(x1,x2) weight: x1 + x2 te(x1) weight: (/ 1 4) + x1 cons(x1,x2) weight: (/ 1 4) id() weight: 0 circ(x1,x2) weight: (/ 1 4) Usable rules: { 1..10 } Removed DPs: #6 Number of SCCs: 1, DPs: 1, edges: 1 SCC { #13 } Removing DPs: Order(PosReal,>,Sum)... Order(PosReal,>,Max)... QLPOpS... succeeded. sortSu(x1) status: [x1] precedence above: sop msubst te cons sop(x1) status: [] precedence above: sortSu msubst te cons #te(x1) status: [] precedence above: #sortSu(x1) status: [x1] precedence above: lift() status: [] precedence above: msubst(x1,x2) status: [] precedence above: te cons subst(x1,x2) status: [x2,x1] precedence above: te(x1) status: [] precedence above: msubst cons cons(x1,x2) status: [] precedence above: msubst te id() status: [] precedence above: circ(x1,x2) status: [x1,x2] precedence above: sortSu sop msubst te cons Usable rules: { 1..7 } Removed DPs: #13 Number of SCCs: 0, DPs: 0, edges: 0 YES