Input TRS: 1: le(|0|(),Y) -> true() 2: le(s(X),|0|()) -> false() 3: le(s(X),s(Y)) -> le(X,Y) 4: minus(|0|(),Y) -> |0|() 5: minus(s(X),Y) -> ifMinus(le(s(X),Y),s(X),Y) 6: ifMinus(true(),s(X),Y) -> |0|() 7: ifMinus(false(),s(X),Y) -> s(minus(X,Y)) 8: quot(|0|(),s(Y)) -> |0|() 9: quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y))) Number of strict rules: 9 Direct Order(PosReal,>,Poly) ... failed. Freezing le 1: le❆1_|0|(Y) -> true() 2: le❆1_s(X,|0|()) -> false() 3: le❆1_s(X,s(Y)) -> le(X,Y) 4: minus(|0|(),Y) -> |0|() 5: minus(s(X),Y) -> ifMinus(le❆1_s(X,Y),s(X),Y) 6: ifMinus(true(),s(X),Y) -> |0|() 7: ifMinus(false(),s(X),Y) -> s(minus(X,Y)) 8: quot(|0|(),s(Y)) -> |0|() 9: quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y))) 10: le(|0|(),_1) ->= le❆1_|0|(_1) 11: le(s(_1),_2) ->= le❆1_s(_1,_2) Number of strict rules: 9 Direct Order(PosReal,>,Poly) ... failed. Dependency Pairs: #1: #quot(s(X),s(Y)) -> #quot(minus(X,Y),s(Y)) #2: #quot(s(X),s(Y)) -> #minus(X,Y) #3: #le(s(_1),_2) ->? #le❆1_s(_1,_2) #4: #ifMinus(false(),s(X),Y) -> #minus(X,Y) #5: #le(|0|(),_1) ->? #le❆1_|0|(_1) #6: #minus(s(X),Y) -> #ifMinus(le❆1_s(X,Y),s(X),Y) #7: #minus(s(X),Y) -> #le❆1_s(X,Y) #8: #le❆1_s(X,s(Y)) -> #le(X,Y) Number of SCCs: 3, DPs: 5, edges: 5 SCC { #1 } Removing DPs: Order(PosReal,>,Sum)... succeeded. |0|() weight: 0 le(x1,x2) weight: (/ 1 2) + x2 s(x1) weight: (/ 1 2) + x1 #le(x1,x2) weight: 0 minus(x1,x2) weight: (/ 1 4) + x1 false() weight: 0 true() weight: 0 le❆1_s(x1,x2) weight: (/ 1 4) + x1 ifMinus(x1,x2,x3) weight: (/ 1 4) + x2 quot(x1,x2) weight: 0 le❆1_|0|(x1) weight: (/ 3 4) #le❆1_|0|(x1) weight: 0 #le❆1_s(x1,x2) weight: 0 #minus(x1,x2) weight: 0 #quot(x1,x2) weight: x1 #ifMinus(x1,x2,x3) weight: 0 Usable rules: { 4..7 } Removed DPs: #1 Number of SCCs: 2, DPs: 4, edges: 4 SCC { #3 #8 } Removing DPs: Order(PosReal,>,Sum)... succeeded. |0|() weight: 0 le(x1,x2) weight: (/ 1 2) + x2 s(x1) weight: (/ 1 2) + x1 #le(x1,x2) weight: (/ 1 4) + x2 minus(x1,x2) weight: (/ 1 4) + x1 false() weight: 0 true() weight: 0 le❆1_s(x1,x2) weight: (/ 1 4) + x1 ifMinus(x1,x2,x3) weight: (/ 1 4) + x2 quot(x1,x2) weight: 0 le❆1_|0|(x1) weight: (/ 3 4) #le❆1_|0|(x1) weight: 0 #le❆1_s(x1,x2) weight: x2 #minus(x1,x2) weight: 0 #quot(x1,x2) weight: x1 #ifMinus(x1,x2,x3) weight: 0 Usable rules: { } Removed DPs: #3 #8 Number of SCCs: 1, DPs: 2, edges: 2 SCC { #4 #6 } Removing DPs: Order(PosReal,>,Sum)... succeeded. |0|() weight: 0 le(x1,x2) weight: (/ 1 2) + x2 s(x1) weight: (/ 1 2) + x1 #le(x1,x2) weight: (/ 1 4) minus(x1,x2) weight: (/ 1 4) + x1 false() weight: 0 true() weight: 0 le❆1_s(x1,x2) weight: (/ 1 4) + x1 ifMinus(x1,x2,x3) weight: (/ 1 4) + x2 quot(x1,x2) weight: 0 le❆1_|0|(x1) weight: (/ 3 4) #le❆1_|0|(x1) weight: 0 #le❆1_s(x1,x2) weight: 0 #minus(x1,x2) weight: (/ 1 4) + x1 + x2 #quot(x1,x2) weight: x1 #ifMinus(x1,x2,x3) weight: x2 + x3 Usable rules: { } Removed DPs: #4 #6 Number of SCCs: 0, DPs: 0, edges: 0 YES