Input TRS: 1: perfectp(|0|()) -> false() 2: perfectp(s(x)) -> f(x,s(|0|()),s(x),s(x)) 3: f(|0|(),y,|0|(),u) -> true() 4: f(|0|(),y,s(z),u) -> false() 5: f(s(x),|0|(),z,u) -> f(x,u,minus(z,s(x)),u) 6: f(s(x),s(y),z,u) -> if(le(x,y),f(s(x),minus(y,x),z,u),f(x,u,z,u)) Number of strict rules: 6 Direct Order(PosReal,>,Poly) ... failed. Freezing f 1: perfectp(|0|()) -> false() 2: perfectp(s(x)) -> f(x,s(|0|()),s(x),s(x)) 3: f❆1_|0|(y,|0|(),u) -> true() 4: f❆1_|0|(y,s(z),u) -> false() 5: f❆1_s(x,|0|(),z,u) -> f(x,u,minus(z,s(x)),u) 6: f❆1_s(x,s(y),z,u) -> if(le(x,y),f❆1_s(x,minus(y,x),z,u),f(x,u,z,u)) 7: f(|0|(),_3,_4,_5) ->= f❆1_|0|(_3,_4,_5) 8: f(s(_1),_4,_5,_6) ->= f❆1_s(_1,_4,_5,_6) Number of strict rules: 6 Direct Order(PosReal,>,Poly) ... failed. Dependency Pairs: #1: #perfectp(s(x)) -> #f(x,s(|0|()),s(x),s(x)) #2: #f❆1_s(x,s(y),z,u) -> #f❆1_s(x,minus(y,x),z,u) #3: #f❆1_s(x,s(y),z,u) -> #f(x,u,z,u) #4: #f(|0|(),_3,_4,_5) ->? #f❆1_|0|(_3,_4,_5) #5: #f❆1_s(x,|0|(),z,u) -> #f(x,u,minus(z,s(x)),u) #6: #f(s(_1),_4,_5,_6) ->? #f❆1_s(_1,_4,_5,_6) Number of SCCs: 1, DPs: 3, edges: 4 SCC { #3 #5 #6 } Removing DPs: Order(PosReal,>,Sum)... succeeded. |0|() weight: 0 #f❆1_s(x1,x2,x3,x4) weight: (/ 1 4) + x1 le(x1,x2) weight: 0 #f❆1_|0|(x1,x2,x3) weight: 0 s(x1) weight: (/ 1 2) + x1 minus(x1,x2) weight: (/ 1 4) #perfectp(x1) weight: 0 false() weight: 0 true() weight: 0 f❆1_s(x1,x2,x3,x4) weight: 0 f(x1,x2,x3,x4) weight: 0 f❆1_|0|(x1,x2,x3) weight: 0 if(x1,x2,x3) weight: 0 #f(x1,x2,x3,x4) weight: x1 perfectp(x1) weight: 0 Usable rules: { } Removed DPs: #3 #5 #6 Number of SCCs: 0, DPs: 0, edges: 0 YES