YES We show the termination of the TRS R: -(-(neg(x),neg(x)),-(neg(y),neg(y))) -> -(-(x,y),-(x,y)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: -#(-(neg(x),neg(x)),-(neg(y),neg(y))) -> -#(-(x,y),-(x,y)) p2: -#(-(neg(x),neg(x)),-(neg(y),neg(y))) -> -#(x,y) and R consists of: r1: -(-(neg(x),neg(x)),-(neg(y),neg(y))) -> -(-(x,y),-(x,y)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: -#(-(neg(x),neg(x)),-(neg(y),neg(y))) -> -#(-(x,y),-(x,y)) p2: -#(-(neg(x),neg(x)),-(neg(y),neg(y))) -> -#(x,y) and R consists of: r1: -(-(neg(x),neg(x)),-(neg(y),neg(y))) -> -(-(x,y),-(x,y)) The set of usable rules consists of r1 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: -# > - > neg argument filter: pi(-#) = 1 pi(-) = 1 pi(neg) = 1 2. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: -#_A(x1,x2) = ((1,0,0,0),(0,0,0,0),(1,1,0,0),(0,1,0,0)) x1 -_A(x1,x2) = x1 + (1,1,1,1) neg_A(x1) = ((1,0,0,0),(1,1,0,0),(0,0,0,0),(0,0,0,0)) x1 + (1,1,1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.