YES We show the termination of the TRS R: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) u21(ackout(X),Y) -> u22(ackin(Y,X)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ackin#(s(X),s(Y)) -> u21#(ackin(s(X),Y),X) p2: ackin#(s(X),s(Y)) -> ackin#(s(X),Y) p3: u21#(ackout(X),Y) -> ackin#(Y,X) and R consists of: r1: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) r2: u21(ackout(X),Y) -> u22(ackin(Y,X)) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ackin#(s(X),s(Y)) -> u21#(ackin(s(X),Y),X) p2: u21#(ackout(X),Y) -> ackin#(Y,X) p3: ackin#(s(X),s(Y)) -> ackin#(s(X),Y) and R consists of: r1: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) r2: u21(ackout(X),Y) -> u22(ackin(Y,X)) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: ackin > u21 > ackout > u22 > s > u21# > ackin# argument filter: pi(ackin#) = [1] pi(s) = [1] pi(u21#) = [2] pi(ackin) = [1, 2] pi(ackout) = [] pi(u21) = 1 pi(u22) = [] 2. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: ackin#_A(x1,x2) = (0,0,1,0) s_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) u21#_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(1,0,0,0),(0,1,0,0)) x2 + (0,1,0,1) ackin_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,1,0,1)) x1 + ((1,0,0,0),(1,1,0,0),(0,0,1,0),(1,1,0,1)) x2 + (1,1,0,1) ackout_A(x1) = (1,1,0,1) u21_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,1,0,1)) x1 + (0,0,2,0) u22_A(x1) = (0,2,3,4) The next rules are strictly ordered: p1, p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ackin#(s(X),s(Y)) -> ackin#(s(X),Y) and R consists of: r1: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) r2: u21(ackout(X),Y) -> u22(ackin(Y,X)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ackin#(s(X),s(Y)) -> ackin#(s(X),Y) and R consists of: r1: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) r2: u21(ackout(X),Y) -> u22(ackin(Y,X)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > ackin# argument filter: pi(ackin#) = [2] pi(s) = [1] 2. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: ackin#_A(x1,x2) = (0,0,0,0) s_A(x1) = (1,1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.