YES We show the termination of the TRS R: ack_in(|0|(),n) -> ack_out(s(n)) ack_in(s(m),|0|()) -> u11(ack_in(m,s(|0|()))) u11(ack_out(n)) -> ack_out(n) ack_in(s(m),s(n)) -> u21(ack_in(s(m),n),m) u21(ack_out(n),m) -> u22(ack_in(m,n)) u22(ack_out(n)) -> ack_out(n) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ack_in#(s(m),|0|()) -> u11#(ack_in(m,s(|0|()))) p2: ack_in#(s(m),|0|()) -> ack_in#(m,s(|0|())) p3: ack_in#(s(m),s(n)) -> u21#(ack_in(s(m),n),m) p4: ack_in#(s(m),s(n)) -> ack_in#(s(m),n) p5: u21#(ack_out(n),m) -> u22#(ack_in(m,n)) p6: u21#(ack_out(n),m) -> ack_in#(m,n) and R consists of: r1: ack_in(|0|(),n) -> ack_out(s(n)) r2: ack_in(s(m),|0|()) -> u11(ack_in(m,s(|0|()))) r3: u11(ack_out(n)) -> ack_out(n) r4: ack_in(s(m),s(n)) -> u21(ack_in(s(m),n),m) r5: u21(ack_out(n),m) -> u22(ack_in(m,n)) r6: u22(ack_out(n)) -> ack_out(n) The estimated dependency graph contains the following SCCs: {p2, p3, p4, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ack_in#(s(m),|0|()) -> ack_in#(m,s(|0|())) p2: ack_in#(s(m),s(n)) -> ack_in#(s(m),n) p3: ack_in#(s(m),s(n)) -> u21#(ack_in(s(m),n),m) p4: u21#(ack_out(n),m) -> ack_in#(m,n) and R consists of: r1: ack_in(|0|(),n) -> ack_out(s(n)) r2: ack_in(s(m),|0|()) -> u11(ack_in(m,s(|0|()))) r3: u11(ack_out(n)) -> ack_out(n) r4: ack_in(s(m),s(n)) -> u21(ack_in(s(m),n),m) r5: u21(ack_out(n),m) -> u22(ack_in(m,n)) r6: u22(ack_out(n)) -> ack_out(n) The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: ack_in > s > u21 > u11 > u22 > ack_in# > ack_out > u21# > |0| argument filter: pi(ack_in#) = 1 pi(s) = [1] pi(|0|) = [] pi(u21#) = 2 pi(ack_in) = [1, 2] pi(ack_out) = [] pi(u22) = [] pi(u11) = [1] pi(u21) = [1] 2. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: ack_in#_A(x1,x2) = ((1,0,0,0),(1,0,0,0),(0,0,0,0),(0,1,0,0)) x1 + (0,1,1,0) s_A(x1) = x1 + (2,1,1,1) |0|_A() = (1,1,1,10) u21#_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(1,1,1,0),(1,0,0,0)) x2 + (3,0,0,2) ack_in_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,0,0,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,0,0),(0,0,0,0)) x2 + (1,1,1,1) ack_out_A(x1) = (3,3,5,11) u22_A(x1) = (7,3,5,11) u11_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,0,0),(1,1,1,0)) x1 + (1,0,5,0) u21_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,1,1,1)) x1 + (3,4,4,0) The next rules are strictly ordered: p1, p3, p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ack_in#(s(m),s(n)) -> ack_in#(s(m),n) and R consists of: r1: ack_in(|0|(),n) -> ack_out(s(n)) r2: ack_in(s(m),|0|()) -> u11(ack_in(m,s(|0|()))) r3: u11(ack_out(n)) -> ack_out(n) r4: ack_in(s(m),s(n)) -> u21(ack_in(s(m),n),m) r5: u21(ack_out(n),m) -> u22(ack_in(m,n)) r6: u22(ack_out(n)) -> ack_out(n) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ack_in#(s(m),s(n)) -> ack_in#(s(m),n) and R consists of: r1: ack_in(|0|(),n) -> ack_out(s(n)) r2: ack_in(s(m),|0|()) -> u11(ack_in(m,s(|0|()))) r3: u11(ack_out(n)) -> ack_out(n) r4: ack_in(s(m),s(n)) -> u21(ack_in(s(m),n),m) r5: u21(ack_out(n),m) -> u22(ack_in(m,n)) r6: u22(ack_out(n)) -> ack_out(n) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > ack_in# argument filter: pi(ack_in#) = [2] pi(s) = [1] 2. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: ack_in#_A(x1,x2) = (0,0,0,0) s_A(x1) = (1,1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.