YES We show the termination of the TRS R: |:|(|:|(x,y),z) -> |:|(x,|:|(y,z)) |:|(+(x,y),z) -> +(|:|(x,z),|:|(y,z)) |:|(z,+(x,f(y))) -> |:|(g(z,y),+(x,a())) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |:|#(|:|(x,y),z) -> |:|#(x,|:|(y,z)) p2: |:|#(|:|(x,y),z) -> |:|#(y,z) p3: |:|#(+(x,y),z) -> |:|#(x,z) p4: |:|#(+(x,y),z) -> |:|#(y,z) p5: |:|#(z,+(x,f(y))) -> |:|#(g(z,y),+(x,a())) and R consists of: r1: |:|(|:|(x,y),z) -> |:|(x,|:|(y,z)) r2: |:|(+(x,y),z) -> +(|:|(x,z),|:|(y,z)) r3: |:|(z,+(x,f(y))) -> |:|(g(z,y),+(x,a())) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: |:|#(|:|(x,y),z) -> |:|#(x,|:|(y,z)) p2: |:|#(+(x,y),z) -> |:|#(y,z) p3: |:|#(+(x,y),z) -> |:|#(x,z) p4: |:|#(|:|(x,y),z) -> |:|#(y,z) and R consists of: r1: |:|(|:|(x,y),z) -> |:|(x,|:|(y,z)) r2: |:|(+(x,y),z) -> +(|:|(x,z),|:|(y,z)) r3: |:|(z,+(x,f(y))) -> |:|(g(z,y),+(x,a())) The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: f > a > |:| > g > + > |:|# argument filter: pi(|:|#) = [1] pi(|:|) = [1, 2] pi(+) = [1, 2] pi(f) = [1] pi(g) = 1 pi(a) = [] 2. matrix interpretations: carrier: N^3 order: lexicographic order interpretations: |:|#_A(x1,x2) = ((0,0,0),(1,0,0),(1,1,0)) x1 |:|_A(x1,x2) = ((1,0,0),(0,1,0),(1,1,1)) x1 + x2 + (1,2,1) +_A(x1,x2) = ((1,0,0),(1,1,0),(1,1,1)) x1 + x2 + (1,1,1) f_A(x1) = ((1,0,0),(1,1,0),(0,0,0)) x1 + (3,3,1) g_A(x1,x2) = ((1,0,0),(1,0,0),(1,1,0)) x1 + (1,1,1) a_A() = (1,1,1) The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains.