YES We show the termination of the TRS R: plus(x,|0|()) -> x plus(|0|(),y) -> y plus(s(x),y) -> s(plus(x,y)) times(|0|(),y) -> |0|() times(s(|0|()),y) -> y times(s(x),y) -> plus(y,times(x,y)) div(|0|(),y) -> |0|() div(x,y) -> quot(x,y,y) quot(|0|(),s(y),z) -> |0|() quot(s(x),s(y),z) -> quot(x,y,z) quot(x,|0|(),s(z)) -> s(div(x,s(z))) div(div(x,y),z) -> div(x,times(y,z)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: plus#(s(x),y) -> plus#(x,y) p2: times#(s(x),y) -> plus#(y,times(x,y)) p3: times#(s(x),y) -> times#(x,y) p4: div#(x,y) -> quot#(x,y,y) p5: quot#(s(x),s(y),z) -> quot#(x,y,z) p6: quot#(x,|0|(),s(z)) -> div#(x,s(z)) p7: div#(div(x,y),z) -> div#(x,times(y,z)) p8: div#(div(x,y),z) -> times#(y,z) and R consists of: r1: plus(x,|0|()) -> x r2: plus(|0|(),y) -> y r3: plus(s(x),y) -> s(plus(x,y)) r4: times(|0|(),y) -> |0|() r5: times(s(|0|()),y) -> y r6: times(s(x),y) -> plus(y,times(x,y)) r7: div(|0|(),y) -> |0|() r8: div(x,y) -> quot(x,y,y) r9: quot(|0|(),s(y),z) -> |0|() r10: quot(s(x),s(y),z) -> quot(x,y,z) r11: quot(x,|0|(),s(z)) -> s(div(x,s(z))) r12: div(div(x,y),z) -> div(x,times(y,z)) The estimated dependency graph contains the following SCCs: {p4, p5, p6, p7} {p3} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: div#(div(x,y),z) -> div#(x,times(y,z)) p2: div#(x,y) -> quot#(x,y,y) p3: quot#(x,|0|(),s(z)) -> div#(x,s(z)) p4: quot#(s(x),s(y),z) -> quot#(x,y,z) and R consists of: r1: plus(x,|0|()) -> x r2: plus(|0|(),y) -> y r3: plus(s(x),y) -> s(plus(x,y)) r4: times(|0|(),y) -> |0|() r5: times(s(|0|()),y) -> y r6: times(s(x),y) -> plus(y,times(x,y)) r7: div(|0|(),y) -> |0|() r8: div(x,y) -> quot(x,y,y) r9: quot(|0|(),s(y),z) -> |0|() r10: quot(s(x),s(y),z) -> quot(x,y,z) r11: quot(x,|0|(),s(z)) -> s(div(x,s(z))) r12: div(div(x,y),z) -> div(x,times(y,z)) The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: times > div > plus > |0| > div# > quot# > s argument filter: pi(div#) = 1 pi(div) = 1 pi(times) = [1, 2] pi(quot#) = 1 pi(|0|) = [] pi(s) = [1] pi(plus) = [1, 2] 2. matrix interpretations: carrier: N^3 order: lexicographic order interpretations: div#_A(x1,x2) = x1 div_A(x1,x2) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,0,1) times_A(x1,x2) = x1 + (1,1,1) quot#_A(x1,x2,x3) = x1 |0|_A() = (1,2,2) s_A(x1) = ((0,0,0),(0,0,0),(1,0,0)) x1 + (1,1,1) plus_A(x1,x2) = ((0,0,0),(0,0,0),(1,0,0)) x2 + (3,2,5) The next rules are strictly ordered: p1, p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: div#(x,y) -> quot#(x,y,y) p2: quot#(x,|0|(),s(z)) -> div#(x,s(z)) and R consists of: r1: plus(x,|0|()) -> x r2: plus(|0|(),y) -> y r3: plus(s(x),y) -> s(plus(x,y)) r4: times(|0|(),y) -> |0|() r5: times(s(|0|()),y) -> y r6: times(s(x),y) -> plus(y,times(x,y)) r7: div(|0|(),y) -> |0|() r8: div(x,y) -> quot(x,y,y) r9: quot(|0|(),s(y),z) -> |0|() r10: quot(s(x),s(y),z) -> quot(x,y,z) r11: quot(x,|0|(),s(z)) -> s(div(x,s(z))) r12: div(div(x,y),z) -> div(x,times(y,z)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: div#(x,y) -> quot#(x,y,y) p2: quot#(x,|0|(),s(z)) -> div#(x,s(z)) and R consists of: r1: plus(x,|0|()) -> x r2: plus(|0|(),y) -> y r3: plus(s(x),y) -> s(plus(x,y)) r4: times(|0|(),y) -> |0|() r5: times(s(|0|()),y) -> y r6: times(s(x),y) -> plus(y,times(x,y)) r7: div(|0|(),y) -> |0|() r8: div(x,y) -> quot(x,y,y) r9: quot(|0|(),s(y),z) -> |0|() r10: quot(s(x),s(y),z) -> quot(x,y,z) r11: quot(x,|0|(),s(z)) -> s(div(x,s(z))) r12: div(div(x,y),z) -> div(x,times(y,z)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: |0| > div# > quot# > s argument filter: pi(div#) = 2 pi(quot#) = 2 pi(|0|) = [] pi(s) = [] 2. matrix interpretations: carrier: N^3 order: lexicographic order interpretations: div#_A(x1,x2) = ((1,0,0),(0,0,0),(1,1,0)) x2 + (1,1,0) quot#_A(x1,x2,x3) = ((1,0,0),(1,0,0),(0,0,0)) x2 + (0,0,3) |0|_A() = (3,1,1) s_A(x1) = (1,1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: times#(s(x),y) -> times#(x,y) and R consists of: r1: plus(x,|0|()) -> x r2: plus(|0|(),y) -> y r3: plus(s(x),y) -> s(plus(x,y)) r4: times(|0|(),y) -> |0|() r5: times(s(|0|()),y) -> y r6: times(s(x),y) -> plus(y,times(x,y)) r7: div(|0|(),y) -> |0|() r8: div(x,y) -> quot(x,y,y) r9: quot(|0|(),s(y),z) -> |0|() r10: quot(s(x),s(y),z) -> quot(x,y,z) r11: quot(x,|0|(),s(z)) -> s(div(x,s(z))) r12: div(div(x,y),z) -> div(x,times(y,z)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: times# > s argument filter: pi(times#) = 1 pi(s) = [1] 2. matrix interpretations: carrier: N^3 order: lexicographic order interpretations: times#_A(x1,x2) = ((1,0,0),(0,1,0),(1,1,0)) x1 s_A(x1) = ((1,0,0),(1,1,0),(0,0,0)) x1 + (1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(s(x),y) -> plus#(x,y) and R consists of: r1: plus(x,|0|()) -> x r2: plus(|0|(),y) -> y r3: plus(s(x),y) -> s(plus(x,y)) r4: times(|0|(),y) -> |0|() r5: times(s(|0|()),y) -> y r6: times(s(x),y) -> plus(y,times(x,y)) r7: div(|0|(),y) -> |0|() r8: div(x,y) -> quot(x,y,y) r9: quot(|0|(),s(y),z) -> |0|() r10: quot(s(x),s(y),z) -> quot(x,y,z) r11: quot(x,|0|(),s(z)) -> s(div(x,s(z))) r12: div(div(x,y),z) -> div(x,times(y,z)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: plus# > s argument filter: pi(plus#) = 1 pi(s) = [1] 2. matrix interpretations: carrier: N^3 order: lexicographic order interpretations: plus#_A(x1,x2) = ((1,0,0),(0,1,0),(1,1,0)) x1 s_A(x1) = ((1,0,0),(1,1,0),(0,0,0)) x1 + (1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.