YES We show the termination of the TRS R: f(a(),f(a(),x)) -> f(a(),f(f(a(),x),f(a(),a()))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(a(),x)) -> f#(a(),f(f(a(),x),f(a(),a()))) p2: f#(a(),f(a(),x)) -> f#(f(a(),x),f(a(),a())) p3: f#(a(),f(a(),x)) -> f#(a(),a()) and R consists of: r1: f(a(),f(a(),x)) -> f(a(),f(f(a(),x),f(a(),a()))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(a(),x)) -> f#(a(),f(f(a(),x),f(a(),a()))) p2: f#(a(),f(a(),x)) -> f#(f(a(),x),f(a(),a())) and R consists of: r1: f(a(),f(a(),x)) -> f(a(),f(f(a(),x),f(a(),a()))) The set of usable rules consists of r1 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: f#_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,0,0,1)) x1 + x2 a_A() = (0,2,1,0) f_A(x1,x2) = ((0,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x1 + x2 + (0,1,2,1) 2. lexicographic path order with precedence: precedence: a > f > f# argument filter: pi(f#) = [1] pi(a) = [] pi(f) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(a(),x)) -> f#(a(),f(f(a(),x),f(a(),a()))) and R consists of: r1: f(a(),f(a(),x)) -> f(a(),f(f(a(),x),f(a(),a()))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(a(),x)) -> f#(a(),f(f(a(),x),f(a(),a()))) and R consists of: r1: f(a(),f(a(),x)) -> f(a(),f(f(a(),x),f(a(),a()))) The set of usable rules consists of r1 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: f#_A(x1,x2) = ((0,0,0,0),(1,0,0,0),(0,1,0,0),(0,1,1,0)) x1 + ((1,0,0,0),(0,0,0,0),(0,1,0,0),(0,0,1,0)) x2 a_A() = (1,1,1,1) f_A(x1,x2) = ((0,0,0,0),(0,0,0,0),(1,0,0,0),(1,0,0,0)) x1 + (0,1,1,1) 2. lexicographic path order with precedence: precedence: a > f# > f argument filter: pi(f#) = [] pi(a) = [] pi(f) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.