YES We show the termination of the TRS R: active(U11(tt(),V2)) -> mark(U12(isNat(V2))) active(U12(tt())) -> mark(tt()) active(U21(tt())) -> mark(tt()) active(U31(tt(),N)) -> mark(N) active(U41(tt(),M,N)) -> mark(U42(isNat(N),M,N)) active(U42(tt(),M,N)) -> mark(s(plus(N,M))) active(isNat(|0|())) -> mark(tt()) active(isNat(plus(V1,V2))) -> mark(U11(isNat(V1),V2)) active(isNat(s(V1))) -> mark(U21(isNat(V1))) active(plus(N,|0|())) -> mark(U31(isNat(N),N)) active(plus(N,s(M))) -> mark(U41(isNat(M),M,N)) mark(U11(X1,X2)) -> active(U11(mark(X1),X2)) mark(tt()) -> active(tt()) mark(U12(X)) -> active(U12(mark(X))) mark(isNat(X)) -> active(isNat(X)) mark(U21(X)) -> active(U21(mark(X))) mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) mark(U42(X1,X2,X3)) -> active(U42(mark(X1),X2,X3)) mark(s(X)) -> active(s(mark(X))) mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) mark(|0|()) -> active(|0|()) U11(mark(X1),X2) -> U11(X1,X2) U11(X1,mark(X2)) -> U11(X1,X2) U11(active(X1),X2) -> U11(X1,X2) U11(X1,active(X2)) -> U11(X1,X2) U12(mark(X)) -> U12(X) U12(active(X)) -> U12(X) isNat(mark(X)) -> isNat(X) isNat(active(X)) -> isNat(X) U21(mark(X)) -> U21(X) U21(active(X)) -> U21(X) U31(mark(X1),X2) -> U31(X1,X2) U31(X1,mark(X2)) -> U31(X1,X2) U31(active(X1),X2) -> U31(X1,X2) U31(X1,active(X2)) -> U31(X1,X2) U41(mark(X1),X2,X3) -> U41(X1,X2,X3) U41(X1,mark(X2),X3) -> U41(X1,X2,X3) U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) U41(active(X1),X2,X3) -> U41(X1,X2,X3) U41(X1,active(X2),X3) -> U41(X1,X2,X3) U41(X1,X2,active(X3)) -> U41(X1,X2,X3) U42(mark(X1),X2,X3) -> U42(X1,X2,X3) U42(X1,mark(X2),X3) -> U42(X1,X2,X3) U42(X1,X2,mark(X3)) -> U42(X1,X2,X3) U42(active(X1),X2,X3) -> U42(X1,X2,X3) U42(X1,active(X2),X3) -> U42(X1,X2,X3) U42(X1,X2,active(X3)) -> U42(X1,X2,X3) s(mark(X)) -> s(X) s(active(X)) -> s(X) plus(mark(X1),X2) -> plus(X1,X2) plus(X1,mark(X2)) -> plus(X1,X2) plus(active(X1),X2) -> plus(X1,X2) plus(X1,active(X2)) -> plus(X1,X2) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(U11(tt(),V2)) -> mark#(U12(isNat(V2))) p2: active#(U11(tt(),V2)) -> U12#(isNat(V2)) p3: active#(U11(tt(),V2)) -> isNat#(V2) p4: active#(U12(tt())) -> mark#(tt()) p5: active#(U21(tt())) -> mark#(tt()) p6: active#(U31(tt(),N)) -> mark#(N) p7: active#(U41(tt(),M,N)) -> mark#(U42(isNat(N),M,N)) p8: active#(U41(tt(),M,N)) -> U42#(isNat(N),M,N) p9: active#(U41(tt(),M,N)) -> isNat#(N) p10: active#(U42(tt(),M,N)) -> mark#(s(plus(N,M))) p11: active#(U42(tt(),M,N)) -> s#(plus(N,M)) p12: active#(U42(tt(),M,N)) -> plus#(N,M) p13: active#(isNat(|0|())) -> mark#(tt()) p14: active#(isNat(plus(V1,V2))) -> mark#(U11(isNat(V1),V2)) p15: active#(isNat(plus(V1,V2))) -> U11#(isNat(V1),V2) p16: active#(isNat(plus(V1,V2))) -> isNat#(V1) p17: active#(isNat(s(V1))) -> mark#(U21(isNat(V1))) p18: active#(isNat(s(V1))) -> U21#(isNat(V1)) p19: active#(isNat(s(V1))) -> isNat#(V1) p20: active#(plus(N,|0|())) -> mark#(U31(isNat(N),N)) p21: active#(plus(N,|0|())) -> U31#(isNat(N),N) p22: active#(plus(N,|0|())) -> isNat#(N) p23: active#(plus(N,s(M))) -> mark#(U41(isNat(M),M,N)) p24: active#(plus(N,s(M))) -> U41#(isNat(M),M,N) p25: active#(plus(N,s(M))) -> isNat#(M) p26: mark#(U11(X1,X2)) -> active#(U11(mark(X1),X2)) p27: mark#(U11(X1,X2)) -> U11#(mark(X1),X2) p28: mark#(U11(X1,X2)) -> mark#(X1) p29: mark#(tt()) -> active#(tt()) p30: mark#(U12(X)) -> active#(U12(mark(X))) p31: mark#(U12(X)) -> U12#(mark(X)) p32: mark#(U12(X)) -> mark#(X) p33: mark#(isNat(X)) -> active#(isNat(X)) p34: mark#(U21(X)) -> active#(U21(mark(X))) p35: mark#(U21(X)) -> U21#(mark(X)) p36: mark#(U21(X)) -> mark#(X) p37: mark#(U31(X1,X2)) -> active#(U31(mark(X1),X2)) p38: mark#(U31(X1,X2)) -> U31#(mark(X1),X2) p39: mark#(U31(X1,X2)) -> mark#(X1) p40: mark#(U41(X1,X2,X3)) -> active#(U41(mark(X1),X2,X3)) p41: mark#(U41(X1,X2,X3)) -> U41#(mark(X1),X2,X3) p42: mark#(U41(X1,X2,X3)) -> mark#(X1) p43: mark#(U42(X1,X2,X3)) -> active#(U42(mark(X1),X2,X3)) p44: mark#(U42(X1,X2,X3)) -> U42#(mark(X1),X2,X3) p45: mark#(U42(X1,X2,X3)) -> mark#(X1) p46: mark#(s(X)) -> active#(s(mark(X))) p47: mark#(s(X)) -> s#(mark(X)) p48: mark#(s(X)) -> mark#(X) p49: mark#(plus(X1,X2)) -> active#(plus(mark(X1),mark(X2))) p50: mark#(plus(X1,X2)) -> plus#(mark(X1),mark(X2)) p51: mark#(plus(X1,X2)) -> mark#(X1) p52: mark#(plus(X1,X2)) -> mark#(X2) p53: mark#(|0|()) -> active#(|0|()) p54: U11#(mark(X1),X2) -> U11#(X1,X2) p55: U11#(X1,mark(X2)) -> U11#(X1,X2) p56: U11#(active(X1),X2) -> U11#(X1,X2) p57: U11#(X1,active(X2)) -> U11#(X1,X2) p58: U12#(mark(X)) -> U12#(X) p59: U12#(active(X)) -> U12#(X) p60: isNat#(mark(X)) -> isNat#(X) p61: isNat#(active(X)) -> isNat#(X) p62: U21#(mark(X)) -> U21#(X) p63: U21#(active(X)) -> U21#(X) p64: U31#(mark(X1),X2) -> U31#(X1,X2) p65: U31#(X1,mark(X2)) -> U31#(X1,X2) p66: U31#(active(X1),X2) -> U31#(X1,X2) p67: U31#(X1,active(X2)) -> U31#(X1,X2) p68: U41#(mark(X1),X2,X3) -> U41#(X1,X2,X3) p69: U41#(X1,mark(X2),X3) -> U41#(X1,X2,X3) p70: U41#(X1,X2,mark(X3)) -> U41#(X1,X2,X3) p71: U41#(active(X1),X2,X3) -> U41#(X1,X2,X3) p72: U41#(X1,active(X2),X3) -> U41#(X1,X2,X3) p73: U41#(X1,X2,active(X3)) -> U41#(X1,X2,X3) p74: U42#(mark(X1),X2,X3) -> U42#(X1,X2,X3) p75: U42#(X1,mark(X2),X3) -> U42#(X1,X2,X3) p76: U42#(X1,X2,mark(X3)) -> U42#(X1,X2,X3) p77: U42#(active(X1),X2,X3) -> U42#(X1,X2,X3) p78: U42#(X1,active(X2),X3) -> U42#(X1,X2,X3) p79: U42#(X1,X2,active(X3)) -> U42#(X1,X2,X3) p80: s#(mark(X)) -> s#(X) p81: s#(active(X)) -> s#(X) p82: plus#(mark(X1),X2) -> plus#(X1,X2) p83: plus#(X1,mark(X2)) -> plus#(X1,X2) p84: plus#(active(X1),X2) -> plus#(X1,X2) p85: plus#(X1,active(X2)) -> plus#(X1,X2) and R consists of: r1: active(U11(tt(),V2)) -> mark(U12(isNat(V2))) r2: active(U12(tt())) -> mark(tt()) r3: active(U21(tt())) -> mark(tt()) r4: active(U31(tt(),N)) -> mark(N) r5: active(U41(tt(),M,N)) -> mark(U42(isNat(N),M,N)) r6: active(U42(tt(),M,N)) -> mark(s(plus(N,M))) r7: active(isNat(|0|())) -> mark(tt()) r8: active(isNat(plus(V1,V2))) -> mark(U11(isNat(V1),V2)) r9: active(isNat(s(V1))) -> mark(U21(isNat(V1))) r10: active(plus(N,|0|())) -> mark(U31(isNat(N),N)) r11: active(plus(N,s(M))) -> mark(U41(isNat(M),M,N)) r12: mark(U11(X1,X2)) -> active(U11(mark(X1),X2)) r13: mark(tt()) -> active(tt()) r14: mark(U12(X)) -> active(U12(mark(X))) r15: mark(isNat(X)) -> active(isNat(X)) r16: mark(U21(X)) -> active(U21(mark(X))) r17: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r18: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r19: mark(U42(X1,X2,X3)) -> active(U42(mark(X1),X2,X3)) r20: mark(s(X)) -> active(s(mark(X))) r21: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r22: mark(|0|()) -> active(|0|()) r23: U11(mark(X1),X2) -> U11(X1,X2) r24: U11(X1,mark(X2)) -> U11(X1,X2) r25: U11(active(X1),X2) -> U11(X1,X2) r26: U11(X1,active(X2)) -> U11(X1,X2) r27: U12(mark(X)) -> U12(X) r28: U12(active(X)) -> U12(X) r29: isNat(mark(X)) -> isNat(X) r30: isNat(active(X)) -> isNat(X) r31: U21(mark(X)) -> U21(X) r32: U21(active(X)) -> U21(X) r33: U31(mark(X1),X2) -> U31(X1,X2) r34: U31(X1,mark(X2)) -> U31(X1,X2) r35: U31(active(X1),X2) -> U31(X1,X2) r36: U31(X1,active(X2)) -> U31(X1,X2) r37: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r38: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r39: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r40: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r41: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r42: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r43: U42(mark(X1),X2,X3) -> U42(X1,X2,X3) r44: U42(X1,mark(X2),X3) -> U42(X1,X2,X3) r45: U42(X1,X2,mark(X3)) -> U42(X1,X2,X3) r46: U42(active(X1),X2,X3) -> U42(X1,X2,X3) r47: U42(X1,active(X2),X3) -> U42(X1,X2,X3) r48: U42(X1,X2,active(X3)) -> U42(X1,X2,X3) r49: s(mark(X)) -> s(X) r50: s(active(X)) -> s(X) r51: plus(mark(X1),X2) -> plus(X1,X2) r52: plus(X1,mark(X2)) -> plus(X1,X2) r53: plus(active(X1),X2) -> plus(X1,X2) r54: plus(X1,active(X2)) -> plus(X1,X2) The estimated dependency graph contains the following SCCs: {p1, p6, p7, p10, p14, p17, p20, p23, p26, p28, p30, p32, p33, p34, p36, p37, p39, p40, p42, p43, p45, p46, p48, p49, p51, p52} {p58, p59} {p60, p61} {p74, p75, p76, p77, p78, p79} {p80, p81} {p82, p83, p84, p85} {p54, p55, p56, p57} {p62, p63} {p64, p65, p66, p67} {p68, p69, p70, p71, p72, p73} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(U11(tt(),V2)) -> mark#(U12(isNat(V2))) p2: mark#(plus(X1,X2)) -> mark#(X2) p3: mark#(plus(X1,X2)) -> mark#(X1) p4: mark#(plus(X1,X2)) -> active#(plus(mark(X1),mark(X2))) p5: active#(plus(N,s(M))) -> mark#(U41(isNat(M),M,N)) p6: mark#(s(X)) -> mark#(X) p7: mark#(s(X)) -> active#(s(mark(X))) p8: active#(plus(N,|0|())) -> mark#(U31(isNat(N),N)) p9: mark#(U42(X1,X2,X3)) -> mark#(X1) p10: mark#(U42(X1,X2,X3)) -> active#(U42(mark(X1),X2,X3)) p11: active#(isNat(s(V1))) -> mark#(U21(isNat(V1))) p12: mark#(U41(X1,X2,X3)) -> mark#(X1) p13: mark#(U41(X1,X2,X3)) -> active#(U41(mark(X1),X2,X3)) p14: active#(isNat(plus(V1,V2))) -> mark#(U11(isNat(V1),V2)) p15: mark#(U31(X1,X2)) -> mark#(X1) p16: mark#(U31(X1,X2)) -> active#(U31(mark(X1),X2)) p17: active#(U42(tt(),M,N)) -> mark#(s(plus(N,M))) p18: mark#(U21(X)) -> mark#(X) p19: mark#(U21(X)) -> active#(U21(mark(X))) p20: active#(U41(tt(),M,N)) -> mark#(U42(isNat(N),M,N)) p21: mark#(isNat(X)) -> active#(isNat(X)) p22: active#(U31(tt(),N)) -> mark#(N) p23: mark#(U12(X)) -> mark#(X) p24: mark#(U12(X)) -> active#(U12(mark(X))) p25: mark#(U11(X1,X2)) -> mark#(X1) p26: mark#(U11(X1,X2)) -> active#(U11(mark(X1),X2)) and R consists of: r1: active(U11(tt(),V2)) -> mark(U12(isNat(V2))) r2: active(U12(tt())) -> mark(tt()) r3: active(U21(tt())) -> mark(tt()) r4: active(U31(tt(),N)) -> mark(N) r5: active(U41(tt(),M,N)) -> mark(U42(isNat(N),M,N)) r6: active(U42(tt(),M,N)) -> mark(s(plus(N,M))) r7: active(isNat(|0|())) -> mark(tt()) r8: active(isNat(plus(V1,V2))) -> mark(U11(isNat(V1),V2)) r9: active(isNat(s(V1))) -> mark(U21(isNat(V1))) r10: active(plus(N,|0|())) -> mark(U31(isNat(N),N)) r11: active(plus(N,s(M))) -> mark(U41(isNat(M),M,N)) r12: mark(U11(X1,X2)) -> active(U11(mark(X1),X2)) r13: mark(tt()) -> active(tt()) r14: mark(U12(X)) -> active(U12(mark(X))) r15: mark(isNat(X)) -> active(isNat(X)) r16: mark(U21(X)) -> active(U21(mark(X))) r17: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r18: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r19: mark(U42(X1,X2,X3)) -> active(U42(mark(X1),X2,X3)) r20: mark(s(X)) -> active(s(mark(X))) r21: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r22: mark(|0|()) -> active(|0|()) r23: U11(mark(X1),X2) -> U11(X1,X2) r24: U11(X1,mark(X2)) -> U11(X1,X2) r25: U11(active(X1),X2) -> U11(X1,X2) r26: U11(X1,active(X2)) -> U11(X1,X2) r27: U12(mark(X)) -> U12(X) r28: U12(active(X)) -> U12(X) r29: isNat(mark(X)) -> isNat(X) r30: isNat(active(X)) -> isNat(X) r31: U21(mark(X)) -> U21(X) r32: U21(active(X)) -> U21(X) r33: U31(mark(X1),X2) -> U31(X1,X2) r34: U31(X1,mark(X2)) -> U31(X1,X2) r35: U31(active(X1),X2) -> U31(X1,X2) r36: U31(X1,active(X2)) -> U31(X1,X2) r37: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r38: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r39: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r40: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r41: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r42: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r43: U42(mark(X1),X2,X3) -> U42(X1,X2,X3) r44: U42(X1,mark(X2),X3) -> U42(X1,X2,X3) r45: U42(X1,X2,mark(X3)) -> U42(X1,X2,X3) r46: U42(active(X1),X2,X3) -> U42(X1,X2,X3) r47: U42(X1,active(X2),X3) -> U42(X1,X2,X3) r48: U42(X1,X2,active(X3)) -> U42(X1,X2,X3) r49: s(mark(X)) -> s(X) r50: s(active(X)) -> s(X) r51: plus(mark(X1),X2) -> plus(X1,X2) r52: plus(X1,mark(X2)) -> plus(X1,X2) r53: plus(active(X1),X2) -> plus(X1,X2) r54: plus(X1,active(X2)) -> plus(X1,X2) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: active#_A(x1) = ((1,0,0,0),(1,0,0,0),(0,0,0,0),(0,1,0,0)) x1 U11_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,0,1,0),(1,0,0,1)) x1 + ((0,0,0,0),(1,0,0,0),(0,1,0,0),(1,1,1,0)) x2 + (0,8,1,32) tt_A() = (1,2,1,1) mark#_A(x1) = ((1,0,0,0),(1,0,0,0),(0,0,0,0),(0,1,0,0)) x1 + (0,0,0,5) U12_A(x1) = x1 + (0,5,3,0) isNat_A(x1) = ((0,0,0,0),(1,0,0,0),(0,0,0,0),(1,1,0,0)) x1 + (1,0,1,0) plus_A(x1,x2) = ((1,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x1 + x2 + (15,15,0,1) mark_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(1,0,0,0)) x1 + (0,4,0,47) s_A(x1) = ((1,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x1 + (11,48,0,0) U41_A(x1,x2,x3) = ((1,0,0,0),(0,0,0,0),(1,1,0,0),(0,0,1,0)) x1 + x2 + ((1,0,0,0),(1,0,0,0),(1,0,0,0),(1,0,0,0)) x3 + (25,58,1,1) |0|_A() = (7,2,1,0) U31_A(x1,x2) = ((1,0,0,0),(0,0,0,0),(0,0,0,0),(0,1,0,0)) x1 + ((1,0,0,0),(0,0,0,0),(1,1,0,0),(1,1,0,0)) x2 + (1,11,0,0) U42_A(x1,x2,x3) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,0,0)) x1 + ((1,0,0,0),(0,0,0,0),(1,0,0,0),(1,0,0,0)) x2 + ((1,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x3 + (25,51,0,0) U21_A(x1) = x1 + (0,5,3,36) active_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,1,1,1)) x1 + (0,0,1,0) 2. lexicographic path order with precedence: precedence: tt > U21 > U41 > active# > isNat > plus > U42 > U11 > mark# > mark > |0| > U31 > active > U12 > s argument filter: pi(active#) = [] pi(U11) = 1 pi(tt) = [] pi(mark#) = [] pi(U12) = [] pi(isNat) = [] pi(plus) = [] pi(mark) = [] pi(s) = [] pi(U41) = [] pi(|0|) = [] pi(U31) = [] pi(U42) = [] pi(U21) = [] pi(active) = 1 The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U12#(mark(X)) -> U12#(X) p2: U12#(active(X)) -> U12#(X) and R consists of: r1: active(U11(tt(),V2)) -> mark(U12(isNat(V2))) r2: active(U12(tt())) -> mark(tt()) r3: active(U21(tt())) -> mark(tt()) r4: active(U31(tt(),N)) -> mark(N) r5: active(U41(tt(),M,N)) -> mark(U42(isNat(N),M,N)) r6: active(U42(tt(),M,N)) -> mark(s(plus(N,M))) r7: active(isNat(|0|())) -> mark(tt()) r8: active(isNat(plus(V1,V2))) -> mark(U11(isNat(V1),V2)) r9: active(isNat(s(V1))) -> mark(U21(isNat(V1))) r10: active(plus(N,|0|())) -> mark(U31(isNat(N),N)) r11: active(plus(N,s(M))) -> mark(U41(isNat(M),M,N)) r12: mark(U11(X1,X2)) -> active(U11(mark(X1),X2)) r13: mark(tt()) -> active(tt()) r14: mark(U12(X)) -> active(U12(mark(X))) r15: mark(isNat(X)) -> active(isNat(X)) r16: mark(U21(X)) -> active(U21(mark(X))) r17: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r18: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r19: mark(U42(X1,X2,X3)) -> active(U42(mark(X1),X2,X3)) r20: mark(s(X)) -> active(s(mark(X))) r21: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r22: mark(|0|()) -> active(|0|()) r23: U11(mark(X1),X2) -> U11(X1,X2) r24: U11(X1,mark(X2)) -> U11(X1,X2) r25: U11(active(X1),X2) -> U11(X1,X2) r26: U11(X1,active(X2)) -> U11(X1,X2) r27: U12(mark(X)) -> U12(X) r28: U12(active(X)) -> U12(X) r29: isNat(mark(X)) -> isNat(X) r30: isNat(active(X)) -> isNat(X) r31: U21(mark(X)) -> U21(X) r32: U21(active(X)) -> U21(X) r33: U31(mark(X1),X2) -> U31(X1,X2) r34: U31(X1,mark(X2)) -> U31(X1,X2) r35: U31(active(X1),X2) -> U31(X1,X2) r36: U31(X1,active(X2)) -> U31(X1,X2) r37: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r38: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r39: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r40: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r41: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r42: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r43: U42(mark(X1),X2,X3) -> U42(X1,X2,X3) r44: U42(X1,mark(X2),X3) -> U42(X1,X2,X3) r45: U42(X1,X2,mark(X3)) -> U42(X1,X2,X3) r46: U42(active(X1),X2,X3) -> U42(X1,X2,X3) r47: U42(X1,active(X2),X3) -> U42(X1,X2,X3) r48: U42(X1,X2,active(X3)) -> U42(X1,X2,X3) r49: s(mark(X)) -> s(X) r50: s(active(X)) -> s(X) r51: plus(mark(X1),X2) -> plus(X1,X2) r52: plus(X1,mark(X2)) -> plus(X1,X2) r53: plus(active(X1),X2) -> plus(X1,X2) r54: plus(X1,active(X2)) -> plus(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: U12#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,0,0),(0,0,1,0)) x1 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,0,1) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) 2. lexicographic path order with precedence: precedence: mark > U12# > active argument filter: pi(U12#) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(mark(X)) -> isNat#(X) p2: isNat#(active(X)) -> isNat#(X) and R consists of: r1: active(U11(tt(),V2)) -> mark(U12(isNat(V2))) r2: active(U12(tt())) -> mark(tt()) r3: active(U21(tt())) -> mark(tt()) r4: active(U31(tt(),N)) -> mark(N) r5: active(U41(tt(),M,N)) -> mark(U42(isNat(N),M,N)) r6: active(U42(tt(),M,N)) -> mark(s(plus(N,M))) r7: active(isNat(|0|())) -> mark(tt()) r8: active(isNat(plus(V1,V2))) -> mark(U11(isNat(V1),V2)) r9: active(isNat(s(V1))) -> mark(U21(isNat(V1))) r10: active(plus(N,|0|())) -> mark(U31(isNat(N),N)) r11: active(plus(N,s(M))) -> mark(U41(isNat(M),M,N)) r12: mark(U11(X1,X2)) -> active(U11(mark(X1),X2)) r13: mark(tt()) -> active(tt()) r14: mark(U12(X)) -> active(U12(mark(X))) r15: mark(isNat(X)) -> active(isNat(X)) r16: mark(U21(X)) -> active(U21(mark(X))) r17: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r18: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r19: mark(U42(X1,X2,X3)) -> active(U42(mark(X1),X2,X3)) r20: mark(s(X)) -> active(s(mark(X))) r21: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r22: mark(|0|()) -> active(|0|()) r23: U11(mark(X1),X2) -> U11(X1,X2) r24: U11(X1,mark(X2)) -> U11(X1,X2) r25: U11(active(X1),X2) -> U11(X1,X2) r26: U11(X1,active(X2)) -> U11(X1,X2) r27: U12(mark(X)) -> U12(X) r28: U12(active(X)) -> U12(X) r29: isNat(mark(X)) -> isNat(X) r30: isNat(active(X)) -> isNat(X) r31: U21(mark(X)) -> U21(X) r32: U21(active(X)) -> U21(X) r33: U31(mark(X1),X2) -> U31(X1,X2) r34: U31(X1,mark(X2)) -> U31(X1,X2) r35: U31(active(X1),X2) -> U31(X1,X2) r36: U31(X1,active(X2)) -> U31(X1,X2) r37: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r38: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r39: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r40: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r41: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r42: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r43: U42(mark(X1),X2,X3) -> U42(X1,X2,X3) r44: U42(X1,mark(X2),X3) -> U42(X1,X2,X3) r45: U42(X1,X2,mark(X3)) -> U42(X1,X2,X3) r46: U42(active(X1),X2,X3) -> U42(X1,X2,X3) r47: U42(X1,active(X2),X3) -> U42(X1,X2,X3) r48: U42(X1,X2,active(X3)) -> U42(X1,X2,X3) r49: s(mark(X)) -> s(X) r50: s(active(X)) -> s(X) r51: plus(mark(X1),X2) -> plus(X1,X2) r52: plus(X1,mark(X2)) -> plus(X1,X2) r53: plus(active(X1),X2) -> plus(X1,X2) r54: plus(X1,active(X2)) -> plus(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: isNat#_A(x1) = ((0,0,0,0),(1,0,0,0),(1,0,0,0),(0,0,0,0)) x1 mark_A(x1) = ((1,0,0,0),(0,0,0,0),(0,1,0,0),(1,1,1,0)) x1 + (1,1,1,1) active_A(x1) = ((1,0,0,0),(0,0,0,0),(0,0,0,0),(1,1,0,0)) x1 + (1,1,1,1) 2. lexicographic path order with precedence: precedence: mark > isNat# > active argument filter: pi(isNat#) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U42#(mark(X1),X2,X3) -> U42#(X1,X2,X3) p2: U42#(X1,X2,active(X3)) -> U42#(X1,X2,X3) p3: U42#(X1,active(X2),X3) -> U42#(X1,X2,X3) p4: U42#(active(X1),X2,X3) -> U42#(X1,X2,X3) p5: U42#(X1,X2,mark(X3)) -> U42#(X1,X2,X3) p6: U42#(X1,mark(X2),X3) -> U42#(X1,X2,X3) and R consists of: r1: active(U11(tt(),V2)) -> mark(U12(isNat(V2))) r2: active(U12(tt())) -> mark(tt()) r3: active(U21(tt())) -> mark(tt()) r4: active(U31(tt(),N)) -> mark(N) r5: active(U41(tt(),M,N)) -> mark(U42(isNat(N),M,N)) r6: active(U42(tt(),M,N)) -> mark(s(plus(N,M))) r7: active(isNat(|0|())) -> mark(tt()) r8: active(isNat(plus(V1,V2))) -> mark(U11(isNat(V1),V2)) r9: active(isNat(s(V1))) -> mark(U21(isNat(V1))) r10: active(plus(N,|0|())) -> mark(U31(isNat(N),N)) r11: active(plus(N,s(M))) -> mark(U41(isNat(M),M,N)) r12: mark(U11(X1,X2)) -> active(U11(mark(X1),X2)) r13: mark(tt()) -> active(tt()) r14: mark(U12(X)) -> active(U12(mark(X))) r15: mark(isNat(X)) -> active(isNat(X)) r16: mark(U21(X)) -> active(U21(mark(X))) r17: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r18: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r19: mark(U42(X1,X2,X3)) -> active(U42(mark(X1),X2,X3)) r20: mark(s(X)) -> active(s(mark(X))) r21: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r22: mark(|0|()) -> active(|0|()) r23: U11(mark(X1),X2) -> U11(X1,X2) r24: U11(X1,mark(X2)) -> U11(X1,X2) r25: U11(active(X1),X2) -> U11(X1,X2) r26: U11(X1,active(X2)) -> U11(X1,X2) r27: U12(mark(X)) -> U12(X) r28: U12(active(X)) -> U12(X) r29: isNat(mark(X)) -> isNat(X) r30: isNat(active(X)) -> isNat(X) r31: U21(mark(X)) -> U21(X) r32: U21(active(X)) -> U21(X) r33: U31(mark(X1),X2) -> U31(X1,X2) r34: U31(X1,mark(X2)) -> U31(X1,X2) r35: U31(active(X1),X2) -> U31(X1,X2) r36: U31(X1,active(X2)) -> U31(X1,X2) r37: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r38: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r39: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r40: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r41: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r42: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r43: U42(mark(X1),X2,X3) -> U42(X1,X2,X3) r44: U42(X1,mark(X2),X3) -> U42(X1,X2,X3) r45: U42(X1,X2,mark(X3)) -> U42(X1,X2,X3) r46: U42(active(X1),X2,X3) -> U42(X1,X2,X3) r47: U42(X1,active(X2),X3) -> U42(X1,X2,X3) r48: U42(X1,X2,active(X3)) -> U42(X1,X2,X3) r49: s(mark(X)) -> s(X) r50: s(active(X)) -> s(X) r51: plus(mark(X1),X2) -> plus(X1,X2) r52: plus(X1,mark(X2)) -> plus(X1,X2) r53: plus(active(X1),X2) -> plus(X1,X2) r54: plus(X1,active(X2)) -> plus(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: U42#_A(x1,x2,x3) = ((1,0,0,0),(0,0,0,0),(1,1,0,0),(1,1,1,0)) x1 + ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,1,1,0)) x2 + ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,1,1,0)) x3 mark_A(x1) = ((1,0,0,0),(0,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,0) 2. lexicographic path order with precedence: precedence: mark > active > U42# argument filter: pi(U42#) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(active(X)) -> s#(X) and R consists of: r1: active(U11(tt(),V2)) -> mark(U12(isNat(V2))) r2: active(U12(tt())) -> mark(tt()) r3: active(U21(tt())) -> mark(tt()) r4: active(U31(tt(),N)) -> mark(N) r5: active(U41(tt(),M,N)) -> mark(U42(isNat(N),M,N)) r6: active(U42(tt(),M,N)) -> mark(s(plus(N,M))) r7: active(isNat(|0|())) -> mark(tt()) r8: active(isNat(plus(V1,V2))) -> mark(U11(isNat(V1),V2)) r9: active(isNat(s(V1))) -> mark(U21(isNat(V1))) r10: active(plus(N,|0|())) -> mark(U31(isNat(N),N)) r11: active(plus(N,s(M))) -> mark(U41(isNat(M),M,N)) r12: mark(U11(X1,X2)) -> active(U11(mark(X1),X2)) r13: mark(tt()) -> active(tt()) r14: mark(U12(X)) -> active(U12(mark(X))) r15: mark(isNat(X)) -> active(isNat(X)) r16: mark(U21(X)) -> active(U21(mark(X))) r17: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r18: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r19: mark(U42(X1,X2,X3)) -> active(U42(mark(X1),X2,X3)) r20: mark(s(X)) -> active(s(mark(X))) r21: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r22: mark(|0|()) -> active(|0|()) r23: U11(mark(X1),X2) -> U11(X1,X2) r24: U11(X1,mark(X2)) -> U11(X1,X2) r25: U11(active(X1),X2) -> U11(X1,X2) r26: U11(X1,active(X2)) -> U11(X1,X2) r27: U12(mark(X)) -> U12(X) r28: U12(active(X)) -> U12(X) r29: isNat(mark(X)) -> isNat(X) r30: isNat(active(X)) -> isNat(X) r31: U21(mark(X)) -> U21(X) r32: U21(active(X)) -> U21(X) r33: U31(mark(X1),X2) -> U31(X1,X2) r34: U31(X1,mark(X2)) -> U31(X1,X2) r35: U31(active(X1),X2) -> U31(X1,X2) r36: U31(X1,active(X2)) -> U31(X1,X2) r37: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r38: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r39: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r40: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r41: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r42: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r43: U42(mark(X1),X2,X3) -> U42(X1,X2,X3) r44: U42(X1,mark(X2),X3) -> U42(X1,X2,X3) r45: U42(X1,X2,mark(X3)) -> U42(X1,X2,X3) r46: U42(active(X1),X2,X3) -> U42(X1,X2,X3) r47: U42(X1,active(X2),X3) -> U42(X1,X2,X3) r48: U42(X1,X2,active(X3)) -> U42(X1,X2,X3) r49: s(mark(X)) -> s(X) r50: s(active(X)) -> s(X) r51: plus(mark(X1),X2) -> plus(X1,X2) r52: plus(X1,mark(X2)) -> plus(X1,X2) r53: plus(active(X1),X2) -> plus(X1,X2) r54: plus(X1,active(X2)) -> plus(X1,X2) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: s#_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) 2. lexicographic path order with precedence: precedence: s# > active > mark argument filter: pi(s#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(mark(X1),X2) -> plus#(X1,X2) p2: plus#(X1,active(X2)) -> plus#(X1,X2) p3: plus#(active(X1),X2) -> plus#(X1,X2) p4: plus#(X1,mark(X2)) -> plus#(X1,X2) and R consists of: r1: active(U11(tt(),V2)) -> mark(U12(isNat(V2))) r2: active(U12(tt())) -> mark(tt()) r3: active(U21(tt())) -> mark(tt()) r4: active(U31(tt(),N)) -> mark(N) r5: active(U41(tt(),M,N)) -> mark(U42(isNat(N),M,N)) r6: active(U42(tt(),M,N)) -> mark(s(plus(N,M))) r7: active(isNat(|0|())) -> mark(tt()) r8: active(isNat(plus(V1,V2))) -> mark(U11(isNat(V1),V2)) r9: active(isNat(s(V1))) -> mark(U21(isNat(V1))) r10: active(plus(N,|0|())) -> mark(U31(isNat(N),N)) r11: active(plus(N,s(M))) -> mark(U41(isNat(M),M,N)) r12: mark(U11(X1,X2)) -> active(U11(mark(X1),X2)) r13: mark(tt()) -> active(tt()) r14: mark(U12(X)) -> active(U12(mark(X))) r15: mark(isNat(X)) -> active(isNat(X)) r16: mark(U21(X)) -> active(U21(mark(X))) r17: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r18: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r19: mark(U42(X1,X2,X3)) -> active(U42(mark(X1),X2,X3)) r20: mark(s(X)) -> active(s(mark(X))) r21: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r22: mark(|0|()) -> active(|0|()) r23: U11(mark(X1),X2) -> U11(X1,X2) r24: U11(X1,mark(X2)) -> U11(X1,X2) r25: U11(active(X1),X2) -> U11(X1,X2) r26: U11(X1,active(X2)) -> U11(X1,X2) r27: U12(mark(X)) -> U12(X) r28: U12(active(X)) -> U12(X) r29: isNat(mark(X)) -> isNat(X) r30: isNat(active(X)) -> isNat(X) r31: U21(mark(X)) -> U21(X) r32: U21(active(X)) -> U21(X) r33: U31(mark(X1),X2) -> U31(X1,X2) r34: U31(X1,mark(X2)) -> U31(X1,X2) r35: U31(active(X1),X2) -> U31(X1,X2) r36: U31(X1,active(X2)) -> U31(X1,X2) r37: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r38: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r39: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r40: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r41: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r42: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r43: U42(mark(X1),X2,X3) -> U42(X1,X2,X3) r44: U42(X1,mark(X2),X3) -> U42(X1,X2,X3) r45: U42(X1,X2,mark(X3)) -> U42(X1,X2,X3) r46: U42(active(X1),X2,X3) -> U42(X1,X2,X3) r47: U42(X1,active(X2),X3) -> U42(X1,X2,X3) r48: U42(X1,X2,active(X3)) -> U42(X1,X2,X3) r49: s(mark(X)) -> s(X) r50: s(active(X)) -> s(X) r51: plus(mark(X1),X2) -> plus(X1,X2) r52: plus(X1,mark(X2)) -> plus(X1,X2) r53: plus(active(X1),X2) -> plus(X1,X2) r54: plus(X1,active(X2)) -> plus(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: plus#_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) 2. lexicographic path order with precedence: precedence: plus# > active > mark argument filter: pi(plus#) = 2 pi(mark) = [1] pi(active) = 1 The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(mark(X1),X2) -> U11#(X1,X2) p2: U11#(X1,active(X2)) -> U11#(X1,X2) p3: U11#(active(X1),X2) -> U11#(X1,X2) p4: U11#(X1,mark(X2)) -> U11#(X1,X2) and R consists of: r1: active(U11(tt(),V2)) -> mark(U12(isNat(V2))) r2: active(U12(tt())) -> mark(tt()) r3: active(U21(tt())) -> mark(tt()) r4: active(U31(tt(),N)) -> mark(N) r5: active(U41(tt(),M,N)) -> mark(U42(isNat(N),M,N)) r6: active(U42(tt(),M,N)) -> mark(s(plus(N,M))) r7: active(isNat(|0|())) -> mark(tt()) r8: active(isNat(plus(V1,V2))) -> mark(U11(isNat(V1),V2)) r9: active(isNat(s(V1))) -> mark(U21(isNat(V1))) r10: active(plus(N,|0|())) -> mark(U31(isNat(N),N)) r11: active(plus(N,s(M))) -> mark(U41(isNat(M),M,N)) r12: mark(U11(X1,X2)) -> active(U11(mark(X1),X2)) r13: mark(tt()) -> active(tt()) r14: mark(U12(X)) -> active(U12(mark(X))) r15: mark(isNat(X)) -> active(isNat(X)) r16: mark(U21(X)) -> active(U21(mark(X))) r17: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r18: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r19: mark(U42(X1,X2,X3)) -> active(U42(mark(X1),X2,X3)) r20: mark(s(X)) -> active(s(mark(X))) r21: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r22: mark(|0|()) -> active(|0|()) r23: U11(mark(X1),X2) -> U11(X1,X2) r24: U11(X1,mark(X2)) -> U11(X1,X2) r25: U11(active(X1),X2) -> U11(X1,X2) r26: U11(X1,active(X2)) -> U11(X1,X2) r27: U12(mark(X)) -> U12(X) r28: U12(active(X)) -> U12(X) r29: isNat(mark(X)) -> isNat(X) r30: isNat(active(X)) -> isNat(X) r31: U21(mark(X)) -> U21(X) r32: U21(active(X)) -> U21(X) r33: U31(mark(X1),X2) -> U31(X1,X2) r34: U31(X1,mark(X2)) -> U31(X1,X2) r35: U31(active(X1),X2) -> U31(X1,X2) r36: U31(X1,active(X2)) -> U31(X1,X2) r37: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r38: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r39: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r40: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r41: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r42: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r43: U42(mark(X1),X2,X3) -> U42(X1,X2,X3) r44: U42(X1,mark(X2),X3) -> U42(X1,X2,X3) r45: U42(X1,X2,mark(X3)) -> U42(X1,X2,X3) r46: U42(active(X1),X2,X3) -> U42(X1,X2,X3) r47: U42(X1,active(X2),X3) -> U42(X1,X2,X3) r48: U42(X1,X2,active(X3)) -> U42(X1,X2,X3) r49: s(mark(X)) -> s(X) r50: s(active(X)) -> s(X) r51: plus(mark(X1),X2) -> plus(X1,X2) r52: plus(X1,mark(X2)) -> plus(X1,X2) r53: plus(active(X1),X2) -> plus(X1,X2) r54: plus(X1,active(X2)) -> plus(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: U11#_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) 2. lexicographic path order with precedence: precedence: U11# > active > mark argument filter: pi(U11#) = 2 pi(mark) = [1] pi(active) = 1 The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U21#(mark(X)) -> U21#(X) p2: U21#(active(X)) -> U21#(X) and R consists of: r1: active(U11(tt(),V2)) -> mark(U12(isNat(V2))) r2: active(U12(tt())) -> mark(tt()) r3: active(U21(tt())) -> mark(tt()) r4: active(U31(tt(),N)) -> mark(N) r5: active(U41(tt(),M,N)) -> mark(U42(isNat(N),M,N)) r6: active(U42(tt(),M,N)) -> mark(s(plus(N,M))) r7: active(isNat(|0|())) -> mark(tt()) r8: active(isNat(plus(V1,V2))) -> mark(U11(isNat(V1),V2)) r9: active(isNat(s(V1))) -> mark(U21(isNat(V1))) r10: active(plus(N,|0|())) -> mark(U31(isNat(N),N)) r11: active(plus(N,s(M))) -> mark(U41(isNat(M),M,N)) r12: mark(U11(X1,X2)) -> active(U11(mark(X1),X2)) r13: mark(tt()) -> active(tt()) r14: mark(U12(X)) -> active(U12(mark(X))) r15: mark(isNat(X)) -> active(isNat(X)) r16: mark(U21(X)) -> active(U21(mark(X))) r17: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r18: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r19: mark(U42(X1,X2,X3)) -> active(U42(mark(X1),X2,X3)) r20: mark(s(X)) -> active(s(mark(X))) r21: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r22: mark(|0|()) -> active(|0|()) r23: U11(mark(X1),X2) -> U11(X1,X2) r24: U11(X1,mark(X2)) -> U11(X1,X2) r25: U11(active(X1),X2) -> U11(X1,X2) r26: U11(X1,active(X2)) -> U11(X1,X2) r27: U12(mark(X)) -> U12(X) r28: U12(active(X)) -> U12(X) r29: isNat(mark(X)) -> isNat(X) r30: isNat(active(X)) -> isNat(X) r31: U21(mark(X)) -> U21(X) r32: U21(active(X)) -> U21(X) r33: U31(mark(X1),X2) -> U31(X1,X2) r34: U31(X1,mark(X2)) -> U31(X1,X2) r35: U31(active(X1),X2) -> U31(X1,X2) r36: U31(X1,active(X2)) -> U31(X1,X2) r37: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r38: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r39: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r40: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r41: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r42: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r43: U42(mark(X1),X2,X3) -> U42(X1,X2,X3) r44: U42(X1,mark(X2),X3) -> U42(X1,X2,X3) r45: U42(X1,X2,mark(X3)) -> U42(X1,X2,X3) r46: U42(active(X1),X2,X3) -> U42(X1,X2,X3) r47: U42(X1,active(X2),X3) -> U42(X1,X2,X3) r48: U42(X1,X2,active(X3)) -> U42(X1,X2,X3) r49: s(mark(X)) -> s(X) r50: s(active(X)) -> s(X) r51: plus(mark(X1),X2) -> plus(X1,X2) r52: plus(X1,mark(X2)) -> plus(X1,X2) r53: plus(active(X1),X2) -> plus(X1,X2) r54: plus(X1,active(X2)) -> plus(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: U21#_A(x1) = ((1,0,0,0),(1,0,0,0),(0,0,0,0),(1,0,0,0)) x1 mark_A(x1) = ((1,0,0,0),(0,0,0,0),(0,1,0,0),(1,1,1,0)) x1 + (1,1,0,1) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,0,1,1) 2. lexicographic path order with precedence: precedence: mark > active > U21# argument filter: pi(U21#) = [] pi(mark) = [] pi(active) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U31#(mark(X1),X2) -> U31#(X1,X2) p2: U31#(X1,active(X2)) -> U31#(X1,X2) p3: U31#(active(X1),X2) -> U31#(X1,X2) p4: U31#(X1,mark(X2)) -> U31#(X1,X2) and R consists of: r1: active(U11(tt(),V2)) -> mark(U12(isNat(V2))) r2: active(U12(tt())) -> mark(tt()) r3: active(U21(tt())) -> mark(tt()) r4: active(U31(tt(),N)) -> mark(N) r5: active(U41(tt(),M,N)) -> mark(U42(isNat(N),M,N)) r6: active(U42(tt(),M,N)) -> mark(s(plus(N,M))) r7: active(isNat(|0|())) -> mark(tt()) r8: active(isNat(plus(V1,V2))) -> mark(U11(isNat(V1),V2)) r9: active(isNat(s(V1))) -> mark(U21(isNat(V1))) r10: active(plus(N,|0|())) -> mark(U31(isNat(N),N)) r11: active(plus(N,s(M))) -> mark(U41(isNat(M),M,N)) r12: mark(U11(X1,X2)) -> active(U11(mark(X1),X2)) r13: mark(tt()) -> active(tt()) r14: mark(U12(X)) -> active(U12(mark(X))) r15: mark(isNat(X)) -> active(isNat(X)) r16: mark(U21(X)) -> active(U21(mark(X))) r17: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r18: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r19: mark(U42(X1,X2,X3)) -> active(U42(mark(X1),X2,X3)) r20: mark(s(X)) -> active(s(mark(X))) r21: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r22: mark(|0|()) -> active(|0|()) r23: U11(mark(X1),X2) -> U11(X1,X2) r24: U11(X1,mark(X2)) -> U11(X1,X2) r25: U11(active(X1),X2) -> U11(X1,X2) r26: U11(X1,active(X2)) -> U11(X1,X2) r27: U12(mark(X)) -> U12(X) r28: U12(active(X)) -> U12(X) r29: isNat(mark(X)) -> isNat(X) r30: isNat(active(X)) -> isNat(X) r31: U21(mark(X)) -> U21(X) r32: U21(active(X)) -> U21(X) r33: U31(mark(X1),X2) -> U31(X1,X2) r34: U31(X1,mark(X2)) -> U31(X1,X2) r35: U31(active(X1),X2) -> U31(X1,X2) r36: U31(X1,active(X2)) -> U31(X1,X2) r37: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r38: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r39: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r40: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r41: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r42: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r43: U42(mark(X1),X2,X3) -> U42(X1,X2,X3) r44: U42(X1,mark(X2),X3) -> U42(X1,X2,X3) r45: U42(X1,X2,mark(X3)) -> U42(X1,X2,X3) r46: U42(active(X1),X2,X3) -> U42(X1,X2,X3) r47: U42(X1,active(X2),X3) -> U42(X1,X2,X3) r48: U42(X1,X2,active(X3)) -> U42(X1,X2,X3) r49: s(mark(X)) -> s(X) r50: s(active(X)) -> s(X) r51: plus(mark(X1),X2) -> plus(X1,X2) r52: plus(X1,mark(X2)) -> plus(X1,X2) r53: plus(active(X1),X2) -> plus(X1,X2) r54: plus(X1,active(X2)) -> plus(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: U31#_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) 2. lexicographic path order with precedence: precedence: U31# > active > mark argument filter: pi(U31#) = 2 pi(mark) = [1] pi(active) = 1 The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U41#(mark(X1),X2,X3) -> U41#(X1,X2,X3) p2: U41#(X1,X2,active(X3)) -> U41#(X1,X2,X3) p3: U41#(X1,active(X2),X3) -> U41#(X1,X2,X3) p4: U41#(active(X1),X2,X3) -> U41#(X1,X2,X3) p5: U41#(X1,X2,mark(X3)) -> U41#(X1,X2,X3) p6: U41#(X1,mark(X2),X3) -> U41#(X1,X2,X3) and R consists of: r1: active(U11(tt(),V2)) -> mark(U12(isNat(V2))) r2: active(U12(tt())) -> mark(tt()) r3: active(U21(tt())) -> mark(tt()) r4: active(U31(tt(),N)) -> mark(N) r5: active(U41(tt(),M,N)) -> mark(U42(isNat(N),M,N)) r6: active(U42(tt(),M,N)) -> mark(s(plus(N,M))) r7: active(isNat(|0|())) -> mark(tt()) r8: active(isNat(plus(V1,V2))) -> mark(U11(isNat(V1),V2)) r9: active(isNat(s(V1))) -> mark(U21(isNat(V1))) r10: active(plus(N,|0|())) -> mark(U31(isNat(N),N)) r11: active(plus(N,s(M))) -> mark(U41(isNat(M),M,N)) r12: mark(U11(X1,X2)) -> active(U11(mark(X1),X2)) r13: mark(tt()) -> active(tt()) r14: mark(U12(X)) -> active(U12(mark(X))) r15: mark(isNat(X)) -> active(isNat(X)) r16: mark(U21(X)) -> active(U21(mark(X))) r17: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r18: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r19: mark(U42(X1,X2,X3)) -> active(U42(mark(X1),X2,X3)) r20: mark(s(X)) -> active(s(mark(X))) r21: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r22: mark(|0|()) -> active(|0|()) r23: U11(mark(X1),X2) -> U11(X1,X2) r24: U11(X1,mark(X2)) -> U11(X1,X2) r25: U11(active(X1),X2) -> U11(X1,X2) r26: U11(X1,active(X2)) -> U11(X1,X2) r27: U12(mark(X)) -> U12(X) r28: U12(active(X)) -> U12(X) r29: isNat(mark(X)) -> isNat(X) r30: isNat(active(X)) -> isNat(X) r31: U21(mark(X)) -> U21(X) r32: U21(active(X)) -> U21(X) r33: U31(mark(X1),X2) -> U31(X1,X2) r34: U31(X1,mark(X2)) -> U31(X1,X2) r35: U31(active(X1),X2) -> U31(X1,X2) r36: U31(X1,active(X2)) -> U31(X1,X2) r37: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r38: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r39: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r40: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r41: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r42: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r43: U42(mark(X1),X2,X3) -> U42(X1,X2,X3) r44: U42(X1,mark(X2),X3) -> U42(X1,X2,X3) r45: U42(X1,X2,mark(X3)) -> U42(X1,X2,X3) r46: U42(active(X1),X2,X3) -> U42(X1,X2,X3) r47: U42(X1,active(X2),X3) -> U42(X1,X2,X3) r48: U42(X1,X2,active(X3)) -> U42(X1,X2,X3) r49: s(mark(X)) -> s(X) r50: s(active(X)) -> s(X) r51: plus(mark(X1),X2) -> plus(X1,X2) r52: plus(X1,mark(X2)) -> plus(X1,X2) r53: plus(active(X1),X2) -> plus(X1,X2) r54: plus(X1,active(X2)) -> plus(X1,X2) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: U41#_A(x1,x2,x3) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x2 + ((1,0,0,0),(0,1,0,0),(0,0,0,0),(1,1,1,0)) x3 mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) active_A(x1) = ((1,0,0,0),(1,1,0,0),(1,0,1,0),(1,1,1,1)) x1 + (1,1,1,1) 2. lexicographic path order with precedence: precedence: U41# > active > mark argument filter: pi(U41#) = [1, 2] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6 We remove them from the problem. Then no dependency pair remains.