YES We show the termination of the TRS R: __(__(X,Y),Z) -> __(X,__(Y,Z)) __(X,nil()) -> X __(nil(),X) -> X U11(tt(),V) -> U12(isNeList(activate(V))) U12(tt()) -> tt() U21(tt(),V1,V2) -> U22(isList(activate(V1)),activate(V2)) U22(tt(),V2) -> U23(isList(activate(V2))) U23(tt()) -> tt() U31(tt(),V) -> U32(isQid(activate(V))) U32(tt()) -> tt() U41(tt(),V1,V2) -> U42(isList(activate(V1)),activate(V2)) U42(tt(),V2) -> U43(isNeList(activate(V2))) U43(tt()) -> tt() U51(tt(),V1,V2) -> U52(isNeList(activate(V1)),activate(V2)) U52(tt(),V2) -> U53(isList(activate(V2))) U53(tt()) -> tt() U61(tt(),V) -> U62(isQid(activate(V))) U62(tt()) -> tt() U71(tt(),V) -> U72(isNePal(activate(V))) U72(tt()) -> tt() and(tt(),X) -> activate(X) isList(V) -> U11(isPalListKind(activate(V)),activate(V)) isList(n__nil()) -> tt() isList(n____(V1,V2)) -> U21(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) isNeList(V) -> U31(isPalListKind(activate(V)),activate(V)) isNeList(n____(V1,V2)) -> U41(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) isNeList(n____(V1,V2)) -> U51(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) isNePal(V) -> U61(isPalListKind(activate(V)),activate(V)) isNePal(n____(I,__(P,I))) -> and(and(isQid(activate(I)),n__isPalListKind(activate(I))),n__and(isPal(activate(P)),n__isPalListKind(activate(P)))) isPal(V) -> U71(isPalListKind(activate(V)),activate(V)) isPal(n__nil()) -> tt() isPalListKind(n__a()) -> tt() isPalListKind(n__e()) -> tt() isPalListKind(n__i()) -> tt() isPalListKind(n__nil()) -> tt() isPalListKind(n__o()) -> tt() isPalListKind(n__u()) -> tt() isPalListKind(n____(V1,V2)) -> and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() __(X1,X2) -> n____(X1,X2) isPalListKind(X) -> n__isPalListKind(X) and(X1,X2) -> n__and(X1,X2) a() -> n__a() e() -> n__e() i() -> n__i() o() -> n__o() u() -> n__u() activate(n__nil()) -> nil() activate(n____(X1,X2)) -> __(X1,X2) activate(n__isPalListKind(X)) -> isPalListKind(X) activate(n__and(X1,X2)) -> and(X1,X2) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__o()) -> o() activate(n__u()) -> u() activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) p2: __#(__(X,Y),Z) -> __#(Y,Z) p3: U11#(tt(),V) -> U12#(isNeList(activate(V))) p4: U11#(tt(),V) -> isNeList#(activate(V)) p5: U11#(tt(),V) -> activate#(V) p6: U21#(tt(),V1,V2) -> U22#(isList(activate(V1)),activate(V2)) p7: U21#(tt(),V1,V2) -> isList#(activate(V1)) p8: U21#(tt(),V1,V2) -> activate#(V1) p9: U21#(tt(),V1,V2) -> activate#(V2) p10: U22#(tt(),V2) -> U23#(isList(activate(V2))) p11: U22#(tt(),V2) -> isList#(activate(V2)) p12: U22#(tt(),V2) -> activate#(V2) p13: U31#(tt(),V) -> U32#(isQid(activate(V))) p14: U31#(tt(),V) -> isQid#(activate(V)) p15: U31#(tt(),V) -> activate#(V) p16: U41#(tt(),V1,V2) -> U42#(isList(activate(V1)),activate(V2)) p17: U41#(tt(),V1,V2) -> isList#(activate(V1)) p18: U41#(tt(),V1,V2) -> activate#(V1) p19: U41#(tt(),V1,V2) -> activate#(V2) p20: U42#(tt(),V2) -> U43#(isNeList(activate(V2))) p21: U42#(tt(),V2) -> isNeList#(activate(V2)) p22: U42#(tt(),V2) -> activate#(V2) p23: U51#(tt(),V1,V2) -> U52#(isNeList(activate(V1)),activate(V2)) p24: U51#(tt(),V1,V2) -> isNeList#(activate(V1)) p25: U51#(tt(),V1,V2) -> activate#(V1) p26: U51#(tt(),V1,V2) -> activate#(V2) p27: U52#(tt(),V2) -> U53#(isList(activate(V2))) p28: U52#(tt(),V2) -> isList#(activate(V2)) p29: U52#(tt(),V2) -> activate#(V2) p30: U61#(tt(),V) -> U62#(isQid(activate(V))) p31: U61#(tt(),V) -> isQid#(activate(V)) p32: U61#(tt(),V) -> activate#(V) p33: U71#(tt(),V) -> U72#(isNePal(activate(V))) p34: U71#(tt(),V) -> isNePal#(activate(V)) p35: U71#(tt(),V) -> activate#(V) p36: and#(tt(),X) -> activate#(X) p37: isList#(V) -> U11#(isPalListKind(activate(V)),activate(V)) p38: isList#(V) -> isPalListKind#(activate(V)) p39: isList#(V) -> activate#(V) p40: isList#(n____(V1,V2)) -> U21#(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) p41: isList#(n____(V1,V2)) -> and#(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) p42: isList#(n____(V1,V2)) -> isPalListKind#(activate(V1)) p43: isList#(n____(V1,V2)) -> activate#(V1) p44: isList#(n____(V1,V2)) -> activate#(V2) p45: isNeList#(V) -> U31#(isPalListKind(activate(V)),activate(V)) p46: isNeList#(V) -> isPalListKind#(activate(V)) p47: isNeList#(V) -> activate#(V) p48: isNeList#(n____(V1,V2)) -> U41#(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) p49: isNeList#(n____(V1,V2)) -> and#(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) p50: isNeList#(n____(V1,V2)) -> isPalListKind#(activate(V1)) p51: isNeList#(n____(V1,V2)) -> activate#(V1) p52: isNeList#(n____(V1,V2)) -> activate#(V2) p53: isNeList#(n____(V1,V2)) -> U51#(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) p54: isNeList#(n____(V1,V2)) -> and#(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) p55: isNeList#(n____(V1,V2)) -> isPalListKind#(activate(V1)) p56: isNeList#(n____(V1,V2)) -> activate#(V1) p57: isNeList#(n____(V1,V2)) -> activate#(V2) p58: isNePal#(V) -> U61#(isPalListKind(activate(V)),activate(V)) p59: isNePal#(V) -> isPalListKind#(activate(V)) p60: isNePal#(V) -> activate#(V) p61: isNePal#(n____(I,__(P,I))) -> and#(and(isQid(activate(I)),n__isPalListKind(activate(I))),n__and(isPal(activate(P)),n__isPalListKind(activate(P)))) p62: isNePal#(n____(I,__(P,I))) -> and#(isQid(activate(I)),n__isPalListKind(activate(I))) p63: isNePal#(n____(I,__(P,I))) -> isQid#(activate(I)) p64: isNePal#(n____(I,__(P,I))) -> activate#(I) p65: isNePal#(n____(I,__(P,I))) -> isPal#(activate(P)) p66: isNePal#(n____(I,__(P,I))) -> activate#(P) p67: isPal#(V) -> U71#(isPalListKind(activate(V)),activate(V)) p68: isPal#(V) -> isPalListKind#(activate(V)) p69: isPal#(V) -> activate#(V) p70: isPalListKind#(n____(V1,V2)) -> and#(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) p71: isPalListKind#(n____(V1,V2)) -> isPalListKind#(activate(V1)) p72: isPalListKind#(n____(V1,V2)) -> activate#(V1) p73: isPalListKind#(n____(V1,V2)) -> activate#(V2) p74: activate#(n__nil()) -> nil#() p75: activate#(n____(X1,X2)) -> __#(X1,X2) p76: activate#(n__isPalListKind(X)) -> isPalListKind#(X) p77: activate#(n__and(X1,X2)) -> and#(X1,X2) p78: activate#(n__a()) -> a#() p79: activate#(n__e()) -> e#() p80: activate#(n__i()) -> i#() p81: activate#(n__o()) -> o#() p82: activate#(n__u()) -> u#() and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt(),V) -> U12(isNeList(activate(V))) r5: U12(tt()) -> tt() r6: U21(tt(),V1,V2) -> U22(isList(activate(V1)),activate(V2)) r7: U22(tt(),V2) -> U23(isList(activate(V2))) r8: U23(tt()) -> tt() r9: U31(tt(),V) -> U32(isQid(activate(V))) r10: U32(tt()) -> tt() r11: U41(tt(),V1,V2) -> U42(isList(activate(V1)),activate(V2)) r12: U42(tt(),V2) -> U43(isNeList(activate(V2))) r13: U43(tt()) -> tt() r14: U51(tt(),V1,V2) -> U52(isNeList(activate(V1)),activate(V2)) r15: U52(tt(),V2) -> U53(isList(activate(V2))) r16: U53(tt()) -> tt() r17: U61(tt(),V) -> U62(isQid(activate(V))) r18: U62(tt()) -> tt() r19: U71(tt(),V) -> U72(isNePal(activate(V))) r20: U72(tt()) -> tt() r21: and(tt(),X) -> activate(X) r22: isList(V) -> U11(isPalListKind(activate(V)),activate(V)) r23: isList(n__nil()) -> tt() r24: isList(n____(V1,V2)) -> U21(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r25: isNeList(V) -> U31(isPalListKind(activate(V)),activate(V)) r26: isNeList(n____(V1,V2)) -> U41(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r27: isNeList(n____(V1,V2)) -> U51(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r28: isNePal(V) -> U61(isPalListKind(activate(V)),activate(V)) r29: isNePal(n____(I,__(P,I))) -> and(and(isQid(activate(I)),n__isPalListKind(activate(I))),n__and(isPal(activate(P)),n__isPalListKind(activate(P)))) r30: isPal(V) -> U71(isPalListKind(activate(V)),activate(V)) r31: isPal(n__nil()) -> tt() r32: isPalListKind(n__a()) -> tt() r33: isPalListKind(n__e()) -> tt() r34: isPalListKind(n__i()) -> tt() r35: isPalListKind(n__nil()) -> tt() r36: isPalListKind(n__o()) -> tt() r37: isPalListKind(n__u()) -> tt() r38: isPalListKind(n____(V1,V2)) -> and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) r39: isQid(n__a()) -> tt() r40: isQid(n__e()) -> tt() r41: isQid(n__i()) -> tt() r42: isQid(n__o()) -> tt() r43: isQid(n__u()) -> tt() r44: nil() -> n__nil() r45: __(X1,X2) -> n____(X1,X2) r46: isPalListKind(X) -> n__isPalListKind(X) r47: and(X1,X2) -> n__and(X1,X2) r48: a() -> n__a() r49: e() -> n__e() r50: i() -> n__i() r51: o() -> n__o() r52: u() -> n__u() r53: activate(n__nil()) -> nil() r54: activate(n____(X1,X2)) -> __(X1,X2) r55: activate(n__isPalListKind(X)) -> isPalListKind(X) r56: activate(n__and(X1,X2)) -> and(X1,X2) r57: activate(n__a()) -> a() r58: activate(n__e()) -> e() r59: activate(n__i()) -> i() r60: activate(n__o()) -> o() r61: activate(n__u()) -> u() r62: activate(X) -> X The estimated dependency graph contains the following SCCs: {p34, p65, p67} {p4, p6, p7, p11, p16, p17, p21, p23, p24, p28, p37, p40, p48, p53} {p36, p70, p71, p72, p73, p76, p77} {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNePal#(n____(I,__(P,I))) -> isPal#(activate(P)) p2: isPal#(V) -> U71#(isPalListKind(activate(V)),activate(V)) p3: U71#(tt(),V) -> isNePal#(activate(V)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt(),V) -> U12(isNeList(activate(V))) r5: U12(tt()) -> tt() r6: U21(tt(),V1,V2) -> U22(isList(activate(V1)),activate(V2)) r7: U22(tt(),V2) -> U23(isList(activate(V2))) r8: U23(tt()) -> tt() r9: U31(tt(),V) -> U32(isQid(activate(V))) r10: U32(tt()) -> tt() r11: U41(tt(),V1,V2) -> U42(isList(activate(V1)),activate(V2)) r12: U42(tt(),V2) -> U43(isNeList(activate(V2))) r13: U43(tt()) -> tt() r14: U51(tt(),V1,V2) -> U52(isNeList(activate(V1)),activate(V2)) r15: U52(tt(),V2) -> U53(isList(activate(V2))) r16: U53(tt()) -> tt() r17: U61(tt(),V) -> U62(isQid(activate(V))) r18: U62(tt()) -> tt() r19: U71(tt(),V) -> U72(isNePal(activate(V))) r20: U72(tt()) -> tt() r21: and(tt(),X) -> activate(X) r22: isList(V) -> U11(isPalListKind(activate(V)),activate(V)) r23: isList(n__nil()) -> tt() r24: isList(n____(V1,V2)) -> U21(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r25: isNeList(V) -> U31(isPalListKind(activate(V)),activate(V)) r26: isNeList(n____(V1,V2)) -> U41(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r27: isNeList(n____(V1,V2)) -> U51(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r28: isNePal(V) -> U61(isPalListKind(activate(V)),activate(V)) r29: isNePal(n____(I,__(P,I))) -> and(and(isQid(activate(I)),n__isPalListKind(activate(I))),n__and(isPal(activate(P)),n__isPalListKind(activate(P)))) r30: isPal(V) -> U71(isPalListKind(activate(V)),activate(V)) r31: isPal(n__nil()) -> tt() r32: isPalListKind(n__a()) -> tt() r33: isPalListKind(n__e()) -> tt() r34: isPalListKind(n__i()) -> tt() r35: isPalListKind(n__nil()) -> tt() r36: isPalListKind(n__o()) -> tt() r37: isPalListKind(n__u()) -> tt() r38: isPalListKind(n____(V1,V2)) -> and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) r39: isQid(n__a()) -> tt() r40: isQid(n__e()) -> tt() r41: isQid(n__i()) -> tt() r42: isQid(n__o()) -> tt() r43: isQid(n__u()) -> tt() r44: nil() -> n__nil() r45: __(X1,X2) -> n____(X1,X2) r46: isPalListKind(X) -> n__isPalListKind(X) r47: and(X1,X2) -> n__and(X1,X2) r48: a() -> n__a() r49: e() -> n__e() r50: i() -> n__i() r51: o() -> n__o() r52: u() -> n__u() r53: activate(n__nil()) -> nil() r54: activate(n____(X1,X2)) -> __(X1,X2) r55: activate(n__isPalListKind(X)) -> isPalListKind(X) r56: activate(n__and(X1,X2)) -> and(X1,X2) r57: activate(n__a()) -> a() r58: activate(n__e()) -> e() r59: activate(n__i()) -> i() r60: activate(n__o()) -> o() r61: activate(n__u()) -> u() r62: activate(X) -> X The set of usable rules consists of r1, r2, r3, r21, r32, r33, r34, r35, r36, r37, r38, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: isNePal#_A(x1) = ((1,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x1 + (0,1,2,0) n_____A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,0,0,0),(0,1,0,0)) x1 + ((1,0,0,0),(0,0,0,0),(1,1,0,0),(0,0,1,0)) x2 + (10,3,0,0) ___A(x1,x2) = ((1,0,0,0),(1,0,0,0),(1,0,0,0),(0,1,0,0)) x1 + ((1,0,0,0),(0,0,0,0),(0,1,0,0),(0,0,0,0)) x2 + (11,2,1,0) isPal#_A(x1) = ((1,0,0,0),(0,0,0,0),(0,0,0,0),(0,1,0,0)) x1 + (8,0,1,21) activate_A(x1) = ((1,0,0,0),(0,0,0,0),(0,0,0,0),(0,1,0,0)) x1 + (3,1,3,0) U71#_A(x1,x2) = x2 + (4,2,0,0) isPalListKind_A(x1) = x1 + (2,2,0,4) tt_A() = (1,5,3,5) nil_A() = (1,2,4,2) and_A(x1,x2) = x1 + ((1,0,0,0),(0,0,0,0),(0,0,0,0),(0,1,0,0)) x2 + (3,0,0,1) n__nil_A() = (0,0,1,1) n__and_A(x1,x2) = x1 + ((1,0,0,0),(0,0,0,0),(0,1,0,0),(0,0,1,0)) x2 + (1,0,0,2) a_A() = (1,0,4,1) n__a_A() = (0,0,1,0) e_A() = (1,3,2,1) n__e_A() = (0,2,1,0) i_A() = (1,0,0,1) n__i_A() = (0,0,1,2) o_A() = (1,2,1,0) n__o_A() = (0,1,0,0) u_A() = (1,2,0,0) n__u_A() = (0,4,1,1) n__isPalListKind_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,0,0),(0,0,0,0)) x1 + (0,1,1,5) 2. lexicographic path order with precedence: precedence: e > i > nil > n__u > and > n__isPalListKind > u > o > a > n__a > U71# > n__nil > isNePal# > isPal# > n____ > n__o > n__i > n__and > n__e > activate > isPalListKind > tt > __ argument filter: pi(isNePal#) = [] pi(n____) = [] pi(__) = [] pi(isPal#) = [] pi(activate) = [] pi(U71#) = [] pi(isPalListKind) = [] pi(tt) = [] pi(nil) = [] pi(and) = [] pi(n__nil) = [] pi(n__and) = [1] pi(a) = [] pi(n__a) = [] pi(e) = [] pi(n__e) = [] pi(i) = [] pi(n__i) = [] pi(o) = [] pi(n__o) = [] pi(u) = [] pi(n__u) = [] pi(n__isPalListKind) = [] The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U52#(tt(),V2) -> isList#(activate(V2)) p2: isList#(n____(V1,V2)) -> U21#(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) p3: U21#(tt(),V1,V2) -> isList#(activate(V1)) p4: isList#(V) -> U11#(isPalListKind(activate(V)),activate(V)) p5: U11#(tt(),V) -> isNeList#(activate(V)) p6: isNeList#(n____(V1,V2)) -> U51#(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) p7: U51#(tt(),V1,V2) -> isNeList#(activate(V1)) p8: isNeList#(n____(V1,V2)) -> U41#(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) p9: U41#(tt(),V1,V2) -> isList#(activate(V1)) p10: U41#(tt(),V1,V2) -> U42#(isList(activate(V1)),activate(V2)) p11: U42#(tt(),V2) -> isNeList#(activate(V2)) p12: U51#(tt(),V1,V2) -> U52#(isNeList(activate(V1)),activate(V2)) p13: U21#(tt(),V1,V2) -> U22#(isList(activate(V1)),activate(V2)) p14: U22#(tt(),V2) -> isList#(activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt(),V) -> U12(isNeList(activate(V))) r5: U12(tt()) -> tt() r6: U21(tt(),V1,V2) -> U22(isList(activate(V1)),activate(V2)) r7: U22(tt(),V2) -> U23(isList(activate(V2))) r8: U23(tt()) -> tt() r9: U31(tt(),V) -> U32(isQid(activate(V))) r10: U32(tt()) -> tt() r11: U41(tt(),V1,V2) -> U42(isList(activate(V1)),activate(V2)) r12: U42(tt(),V2) -> U43(isNeList(activate(V2))) r13: U43(tt()) -> tt() r14: U51(tt(),V1,V2) -> U52(isNeList(activate(V1)),activate(V2)) r15: U52(tt(),V2) -> U53(isList(activate(V2))) r16: U53(tt()) -> tt() r17: U61(tt(),V) -> U62(isQid(activate(V))) r18: U62(tt()) -> tt() r19: U71(tt(),V) -> U72(isNePal(activate(V))) r20: U72(tt()) -> tt() r21: and(tt(),X) -> activate(X) r22: isList(V) -> U11(isPalListKind(activate(V)),activate(V)) r23: isList(n__nil()) -> tt() r24: isList(n____(V1,V2)) -> U21(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r25: isNeList(V) -> U31(isPalListKind(activate(V)),activate(V)) r26: isNeList(n____(V1,V2)) -> U41(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r27: isNeList(n____(V1,V2)) -> U51(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r28: isNePal(V) -> U61(isPalListKind(activate(V)),activate(V)) r29: isNePal(n____(I,__(P,I))) -> and(and(isQid(activate(I)),n__isPalListKind(activate(I))),n__and(isPal(activate(P)),n__isPalListKind(activate(P)))) r30: isPal(V) -> U71(isPalListKind(activate(V)),activate(V)) r31: isPal(n__nil()) -> tt() r32: isPalListKind(n__a()) -> tt() r33: isPalListKind(n__e()) -> tt() r34: isPalListKind(n__i()) -> tt() r35: isPalListKind(n__nil()) -> tt() r36: isPalListKind(n__o()) -> tt() r37: isPalListKind(n__u()) -> tt() r38: isPalListKind(n____(V1,V2)) -> and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) r39: isQid(n__a()) -> tt() r40: isQid(n__e()) -> tt() r41: isQid(n__i()) -> tt() r42: isQid(n__o()) -> tt() r43: isQid(n__u()) -> tt() r44: nil() -> n__nil() r45: __(X1,X2) -> n____(X1,X2) r46: isPalListKind(X) -> n__isPalListKind(X) r47: and(X1,X2) -> n__and(X1,X2) r48: a() -> n__a() r49: e() -> n__e() r50: i() -> n__i() r51: o() -> n__o() r52: u() -> n__u() r53: activate(n__nil()) -> nil() r54: activate(n____(X1,X2)) -> __(X1,X2) r55: activate(n__isPalListKind(X)) -> isPalListKind(X) r56: activate(n__and(X1,X2)) -> and(X1,X2) r57: activate(n__a()) -> a() r58: activate(n__e()) -> e() r59: activate(n__i()) -> i() r60: activate(n__o()) -> o() r61: activate(n__u()) -> u() r62: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r21, r22, r23, r24, r25, r26, r27, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: U52#_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(1,0,1,0)) x1 + ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,1,1,1)) x2 + (22,0,0,0) tt_A() = (2,2,85,3) isList#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(1,1,0,1)) x1 + (16,45,121,47) activate_A(x1) = ((1,0,0,0),(1,1,0,0),(0,0,1,0),(0,0,0,1)) x1 + (7,4,32,30) n_____A(x1,x2) = ((1,0,0,0),(0,0,0,0),(0,1,0,0),(0,0,0,0)) x1 + x2 + (65,0,74,1) U21#_A(x1,x2,x3) = ((0,0,0,0),(1,0,0,0),(0,1,0,0),(1,0,0,0)) x1 + ((1,0,0,0),(0,0,0,0),(1,1,0,0),(0,0,0,0)) x2 + ((1,0,0,0),(0,1,0,0),(1,0,0,0),(1,0,0,0)) x3 + (65,53,156,85) and_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,1,1,0)) x1 + ((1,0,0,0),(1,0,0,0),(1,0,0,0),(1,1,0,0)) x2 + (6,3,48,31) isPalListKind_A(x1) = ((1,0,0,0),(1,0,0,0),(1,1,0,0),(1,0,1,0)) x1 + (2,3,1,0) n__isPalListKind_A(x1) = x1 U11#_A(x1,x2) = ((0,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x1 + ((1,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x2 + (8,46,115,0) isNeList#_A(x1) = ((1,0,0,0),(1,0,0,0),(1,1,0,0),(0,1,1,0)) x1 + (0,0,105,14) U51#_A(x1,x2,x3) = ((0,0,0,0),(1,0,0,0),(1,1,0,0),(0,1,1,0)) x1 + ((1,0,0,0),(1,0,0,0),(1,0,0,0),(0,0,0,0)) x2 + x3 + (50,6,111,0) U41#_A(x1,x2,x3) = ((1,0,0,0),(1,1,0,0),(1,1,0,0),(0,0,0,0)) x2 + ((1,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,1,0)) x3 + (49,48,156,57) U42#_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,0,0,0)) x1 + ((1,0,0,0),(1,0,0,0),(0,0,0,0),(1,0,0,0)) x2 + (6,24,28,51) isList_A(x1) = ((1,0,0,0),(0,1,0,0),(1,0,1,0),(1,0,0,1)) x1 + (28,14,72,0) isNeList_A(x1) = ((1,0,0,0),(1,1,0,0),(0,1,1,0),(0,1,0,0)) x1 + (13,15,16,59) U22#_A(x1,x2) = ((1,0,0,0),(0,0,0,0),(1,0,0,0),(1,0,0,0)) x1 + ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,0,0,1)) x2 + (22,50,0,23) U23_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(1,1,1,1)) x1 + (1,1,0,0) U43_A(x1) = ((0,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x1 + (3,3,84,0) U53_A(x1) = ((1,0,0,0),(0,0,0,0),(1,0,0,0),(1,0,0,0)) x1 + (1,2,83,1) U12_A(x1) = ((0,0,0,0),(1,0,0,0),(0,1,0,0),(1,0,1,0)) x1 + (3,1,84,16) U22_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(0,0,0,0),(0,0,0,0)) x1 + ((1,0,0,0),(1,1,0,0),(0,0,0,0),(0,0,0,0)) x2 + (35,16,130,0) U32_A(x1) = ((1,0,0,0),(1,1,0,0),(0,0,1,0),(0,0,0,1)) x1 + (1,0,1,1) U42_A(x1,x2) = ((0,0,0,0),(1,0,0,0),(0,0,0,0),(1,0,0,0)) x1 + ((0,0,0,0),(1,0,0,0),(1,0,0,0),(1,0,0,0)) x2 + (4,2,84,19) U52_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(0,0,1,0),(0,1,0,0)) x1 + ((1,0,0,0),(1,0,0,0),(1,0,0,0),(0,1,0,0)) x2 + (35,0,32,33) isQid_A(x1) = (3,3,86,4) n__a_A() = (85,0,0,1) n__e_A() = (0,1,0,0) n__i_A() = (4,0,0,1) n__o_A() = (0,1,0,0) n__u_A() = (0,85,4,1) ___A(x1,x2) = ((1,0,0,0),(1,0,0,0),(1,1,0,0),(0,0,1,0)) x1 + ((1,0,0,0),(0,1,0,0),(1,1,1,0),(1,1,0,1)) x2 + (71,70,107,32) nil_A() = (86,0,33,32) U11_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(1,1,1,0),(0,1,1,0)) x1 + ((0,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,0,0)) x2 + (2,0,0,0) U21_A(x1,x2,x3) = ((0,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x1 + ((1,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x2 + ((1,0,0,0),(1,0,0,0),(1,0,0,0),(0,0,0,0)) x3 + (78,0,182,67) U31_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,1,1)) x1 + ((0,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x2 + (3,5,3,0) U41_A(x1,x2,x3) = ((1,0,0,0),(0,1,0,0),(0,0,0,0),(0,1,1,0)) x1 + ((0,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x3 + (3,0,90,0) U51_A(x1,x2,x3) = x2 + x3 + (63,0,90,60) n__nil_A() = (85,0,0,1) a_A() = (86,1,33,32) e_A() = (1,6,1,1) i_A() = (5,9,1,2) o_A() = (1,1,0,0) u_A() = (1,90,37,32) n__and_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,0,0,0),(0,1,1,0)) x1 + ((1,0,0,0),(0,1,0,0),(0,0,0,0),(0,1,0,0)) x2 2. lexicographic path order with precedence: precedence: __ > U21 > isNeList > U42# > n____ > U51 > U52 > U22 > U51# > U21# > isNeList# > U41# > U22# > activate > isPalListKind > and > n__and > n__e > u > U31 > U41 > n__u > nil > o > n__o > U42 > U32 > U53 > isList > tt > U11 > a > U52# > isList# > U11# > n__isPalListKind > n__a > U23 > isQid > e > i > n__i > n__nil > U12 > U43 argument filter: pi(U52#) = [] pi(tt) = [] pi(isList#) = 1 pi(activate) = [] pi(n____) = [] pi(U21#) = [] pi(and) = [] pi(isPalListKind) = [] pi(n__isPalListKind) = [] pi(U11#) = [] pi(isNeList#) = [] pi(U51#) = [] pi(U41#) = [] pi(U42#) = [] pi(isList) = [] pi(isNeList) = [] pi(U22#) = [] pi(U23) = 1 pi(U43) = [] pi(U53) = [] pi(U12) = [] pi(U22) = [] pi(U32) = 1 pi(U42) = [] pi(U52) = [] pi(isQid) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(__) = [] pi(nil) = [] pi(U11) = [] pi(U21) = [] pi(U31) = 1 pi(U41) = [] pi(U51) = [] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(n__and) = [] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPalListKind#(n____(V1,V2)) -> activate#(V2) p2: activate#(n__and(X1,X2)) -> and#(X1,X2) p3: and#(tt(),X) -> activate#(X) p4: activate#(n__isPalListKind(X)) -> isPalListKind#(X) p5: isPalListKind#(n____(V1,V2)) -> activate#(V1) p6: isPalListKind#(n____(V1,V2)) -> isPalListKind#(activate(V1)) p7: isPalListKind#(n____(V1,V2)) -> and#(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt(),V) -> U12(isNeList(activate(V))) r5: U12(tt()) -> tt() r6: U21(tt(),V1,V2) -> U22(isList(activate(V1)),activate(V2)) r7: U22(tt(),V2) -> U23(isList(activate(V2))) r8: U23(tt()) -> tt() r9: U31(tt(),V) -> U32(isQid(activate(V))) r10: U32(tt()) -> tt() r11: U41(tt(),V1,V2) -> U42(isList(activate(V1)),activate(V2)) r12: U42(tt(),V2) -> U43(isNeList(activate(V2))) r13: U43(tt()) -> tt() r14: U51(tt(),V1,V2) -> U52(isNeList(activate(V1)),activate(V2)) r15: U52(tt(),V2) -> U53(isList(activate(V2))) r16: U53(tt()) -> tt() r17: U61(tt(),V) -> U62(isQid(activate(V))) r18: U62(tt()) -> tt() r19: U71(tt(),V) -> U72(isNePal(activate(V))) r20: U72(tt()) -> tt() r21: and(tt(),X) -> activate(X) r22: isList(V) -> U11(isPalListKind(activate(V)),activate(V)) r23: isList(n__nil()) -> tt() r24: isList(n____(V1,V2)) -> U21(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r25: isNeList(V) -> U31(isPalListKind(activate(V)),activate(V)) r26: isNeList(n____(V1,V2)) -> U41(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r27: isNeList(n____(V1,V2)) -> U51(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r28: isNePal(V) -> U61(isPalListKind(activate(V)),activate(V)) r29: isNePal(n____(I,__(P,I))) -> and(and(isQid(activate(I)),n__isPalListKind(activate(I))),n__and(isPal(activate(P)),n__isPalListKind(activate(P)))) r30: isPal(V) -> U71(isPalListKind(activate(V)),activate(V)) r31: isPal(n__nil()) -> tt() r32: isPalListKind(n__a()) -> tt() r33: isPalListKind(n__e()) -> tt() r34: isPalListKind(n__i()) -> tt() r35: isPalListKind(n__nil()) -> tt() r36: isPalListKind(n__o()) -> tt() r37: isPalListKind(n__u()) -> tt() r38: isPalListKind(n____(V1,V2)) -> and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) r39: isQid(n__a()) -> tt() r40: isQid(n__e()) -> tt() r41: isQid(n__i()) -> tt() r42: isQid(n__o()) -> tt() r43: isQid(n__u()) -> tt() r44: nil() -> n__nil() r45: __(X1,X2) -> n____(X1,X2) r46: isPalListKind(X) -> n__isPalListKind(X) r47: and(X1,X2) -> n__and(X1,X2) r48: a() -> n__a() r49: e() -> n__e() r50: i() -> n__i() r51: o() -> n__o() r52: u() -> n__u() r53: activate(n__nil()) -> nil() r54: activate(n____(X1,X2)) -> __(X1,X2) r55: activate(n__isPalListKind(X)) -> isPalListKind(X) r56: activate(n__and(X1,X2)) -> and(X1,X2) r57: activate(n__a()) -> a() r58: activate(n__e()) -> e() r59: activate(n__i()) -> i() r60: activate(n__o()) -> o() r61: activate(n__u()) -> u() r62: activate(X) -> X The set of usable rules consists of r1, r2, r3, r21, r32, r33, r34, r35, r36, r37, r38, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: isPalListKind#_A(x1) = ((1,0,0,0),(0,0,0,0),(1,1,0,0),(0,1,1,0)) x1 + (8,2,27,10) n_____A(x1,x2) = ((1,0,0,0),(1,0,0,0),(1,0,0,0),(1,1,0,0)) x1 + ((1,0,0,0),(0,0,0,0),(0,0,0,0),(1,1,0,0)) x2 + (14,1,1,2) activate#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,0,0),(1,0,1,0)) x1 + (1,1,26,1) n__and_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(1,1,1,0),(0,1,1,1)) x1 + ((1,0,0,0),(1,1,0,0),(0,0,1,0),(0,0,0,0)) x2 + (0,1,1,1) and#_A(x1,x2) = ((1,0,0,0),(0,0,0,0),(0,1,0,0),(0,0,0,0)) x1 + x2 tt_A() = (2,25,7,9) n__isPalListKind_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,0,0),(1,0,0,0)) x1 + (8,24,0,1) activate_A(x1) = ((1,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x1 + (2,14,3,3) isPalListKind_A(x1) = ((1,0,0,0),(0,1,0,0),(1,0,1,0),(1,0,0,1)) x1 + (9,23,4,4) ___A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,0,1,0),(0,0,0,1)) x1 + ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,1,0)) x2 + (15,1,4,1) nil_A() = (2,4,2,4) and_A(x1,x2) = ((1,0,0,0),(1,0,0,0),(1,0,0,0),(1,0,0,0)) x1 + ((1,0,0,0),(0,0,0,0),(1,0,0,0),(1,0,0,0)) x2 + (1,2,0,0) n__nil_A() = (1,3,1,1) a_A() = (1,15,5,7) n__a_A() = (0,16,4,6) e_A() = (1,15,4,0) n__e_A() = (0,3,1,1) i_A() = (1,0,2,2) n__i_A() = (0,1,1,1) o_A() = (1,0,0,0) n__o_A() = (0,3,4,6) u_A() = (4,4,2,4) n__u_A() = (3,3,1,1) 2. lexicographic path order with precedence: precedence: i > n__nil > __ > n____ > n__a > tt > isPalListKind# > activate > n__i > o > isPalListKind > n__e > a > and > e > n__o > nil > n__and > and# > u > n__u > n__isPalListKind > activate# argument filter: pi(isPalListKind#) = [] pi(n____) = [] pi(activate#) = [] pi(n__and) = [1] pi(and#) = [] pi(tt) = [] pi(n__isPalListKind) = [] pi(activate) = [] pi(isPalListKind) = 1 pi(__) = 1 pi(nil) = [] pi(and) = [] pi(n__nil) = [] pi(a) = [] pi(n__a) = [] pi(e) = [] pi(n__e) = [] pi(i) = [] pi(n__i) = [] pi(o) = [] pi(n__o) = [] pi(u) = [] pi(n__u) = [] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) p2: __#(__(X,Y),Z) -> __#(Y,Z) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt(),V) -> U12(isNeList(activate(V))) r5: U12(tt()) -> tt() r6: U21(tt(),V1,V2) -> U22(isList(activate(V1)),activate(V2)) r7: U22(tt(),V2) -> U23(isList(activate(V2))) r8: U23(tt()) -> tt() r9: U31(tt(),V) -> U32(isQid(activate(V))) r10: U32(tt()) -> tt() r11: U41(tt(),V1,V2) -> U42(isList(activate(V1)),activate(V2)) r12: U42(tt(),V2) -> U43(isNeList(activate(V2))) r13: U43(tt()) -> tt() r14: U51(tt(),V1,V2) -> U52(isNeList(activate(V1)),activate(V2)) r15: U52(tt(),V2) -> U53(isList(activate(V2))) r16: U53(tt()) -> tt() r17: U61(tt(),V) -> U62(isQid(activate(V))) r18: U62(tt()) -> tt() r19: U71(tt(),V) -> U72(isNePal(activate(V))) r20: U72(tt()) -> tt() r21: and(tt(),X) -> activate(X) r22: isList(V) -> U11(isPalListKind(activate(V)),activate(V)) r23: isList(n__nil()) -> tt() r24: isList(n____(V1,V2)) -> U21(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r25: isNeList(V) -> U31(isPalListKind(activate(V)),activate(V)) r26: isNeList(n____(V1,V2)) -> U41(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r27: isNeList(n____(V1,V2)) -> U51(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r28: isNePal(V) -> U61(isPalListKind(activate(V)),activate(V)) r29: isNePal(n____(I,__(P,I))) -> and(and(isQid(activate(I)),n__isPalListKind(activate(I))),n__and(isPal(activate(P)),n__isPalListKind(activate(P)))) r30: isPal(V) -> U71(isPalListKind(activate(V)),activate(V)) r31: isPal(n__nil()) -> tt() r32: isPalListKind(n__a()) -> tt() r33: isPalListKind(n__e()) -> tt() r34: isPalListKind(n__i()) -> tt() r35: isPalListKind(n__nil()) -> tt() r36: isPalListKind(n__o()) -> tt() r37: isPalListKind(n__u()) -> tt() r38: isPalListKind(n____(V1,V2)) -> and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) r39: isQid(n__a()) -> tt() r40: isQid(n__e()) -> tt() r41: isQid(n__i()) -> tt() r42: isQid(n__o()) -> tt() r43: isQid(n__u()) -> tt() r44: nil() -> n__nil() r45: __(X1,X2) -> n____(X1,X2) r46: isPalListKind(X) -> n__isPalListKind(X) r47: and(X1,X2) -> n__and(X1,X2) r48: a() -> n__a() r49: e() -> n__e() r50: i() -> n__i() r51: o() -> n__o() r52: u() -> n__u() r53: activate(n__nil()) -> nil() r54: activate(n____(X1,X2)) -> __(X1,X2) r55: activate(n__isPalListKind(X)) -> isPalListKind(X) r56: activate(n__and(X1,X2)) -> and(X1,X2) r57: activate(n__a()) -> a() r58: activate(n__e()) -> e() r59: activate(n__i()) -> i() r60: activate(n__o()) -> o() r61: activate(n__u()) -> u() r62: activate(X) -> X The set of usable rules consists of r1, r2, r3, r45 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: __#_A(x1,x2) = ((1,0,0,0),(1,0,0,0),(1,0,0,0),(0,1,0,0)) x1 + ((0,0,0,0),(0,0,0,0),(1,0,0,0),(1,1,0,0)) x2 ___A(x1,x2) = x1 + x2 + (1,0,1,1) nil_A() = (1,1,1,1) n_____A(x1,x2) = (0,0,0,0) 2. lexicographic path order with precedence: precedence: __ > __# > n____ > nil argument filter: pi(__#) = [] pi(__) = [] pi(nil) = [] pi(n____) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.