YES We show the termination of the TRS R: a__f(|0|()) -> cons(|0|(),f(s(|0|()))) a__f(s(|0|())) -> a__f(a__p(s(|0|()))) a__p(s(X)) -> mark(X) mark(f(X)) -> a__f(mark(X)) mark(p(X)) -> a__p(mark(X)) mark(|0|()) -> |0|() mark(cons(X1,X2)) -> cons(mark(X1),X2) mark(s(X)) -> s(mark(X)) a__f(X) -> f(X) a__p(X) -> p(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(s(|0|())) -> a__f#(a__p(s(|0|()))) p2: a__f#(s(|0|())) -> a__p#(s(|0|())) p3: a__p#(s(X)) -> mark#(X) p4: mark#(f(X)) -> a__f#(mark(X)) p5: mark#(f(X)) -> mark#(X) p6: mark#(p(X)) -> a__p#(mark(X)) p7: mark#(p(X)) -> mark#(X) p8: mark#(cons(X1,X2)) -> mark#(X1) p9: mark#(s(X)) -> mark#(X) and R consists of: r1: a__f(|0|()) -> cons(|0|(),f(s(|0|()))) r2: a__f(s(|0|())) -> a__f(a__p(s(|0|()))) r3: a__p(s(X)) -> mark(X) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(p(X)) -> a__p(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(cons(X1,X2)) -> cons(mark(X1),X2) r8: mark(s(X)) -> s(mark(X)) r9: a__f(X) -> f(X) r10: a__p(X) -> p(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(s(|0|())) -> a__f#(a__p(s(|0|()))) p2: a__f#(s(|0|())) -> a__p#(s(|0|())) p3: a__p#(s(X)) -> mark#(X) p4: mark#(s(X)) -> mark#(X) p5: mark#(cons(X1,X2)) -> mark#(X1) p6: mark#(p(X)) -> mark#(X) p7: mark#(p(X)) -> a__p#(mark(X)) p8: mark#(f(X)) -> mark#(X) p9: mark#(f(X)) -> a__f#(mark(X)) and R consists of: r1: a__f(|0|()) -> cons(|0|(),f(s(|0|()))) r2: a__f(s(|0|())) -> a__f(a__p(s(|0|()))) r3: a__p(s(X)) -> mark(X) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(p(X)) -> a__p(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(cons(X1,X2)) -> cons(mark(X1),X2) r8: mark(s(X)) -> s(mark(X)) r9: a__f(X) -> f(X) r10: a__p(X) -> p(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: a__f#_A(x1) = x1 + (1,4,11,8) s_A(x1) = ((1,0,0,0),(0,1,0,0),(1,1,1,0),(1,1,0,1)) x1 + (3,2,1,1) |0|_A() = (1,1,0,1) a__p_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,0,0,1)) x1 + (0,3,8,3) a__p#_A(x1) = x1 + (0,0,9,0) mark#_A(x1) = ((1,0,0,0),(0,1,0,0),(1,1,1,0),(0,1,1,1)) x1 + (2,1,0,2) cons_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,0,1,1)) x1 + ((0,0,0,0),(1,0,0,0),(0,1,0,0),(1,1,1,0)) x2 + (5,1,1,1) p_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,0,0,1)) x1 + (0,3,8,1) mark_A(x1) = ((1,0,0,0),(1,1,0,0),(1,0,1,0),(1,1,0,1)) x1 + (1,3,1,8) f_A(x1) = ((1,0,0,0),(1,0,0,0),(1,0,0,0),(0,1,0,0)) x1 + (6,3,1,1) a__f_A(x1) = ((1,0,0,0),(1,0,0,0),(0,0,0,0),(1,0,0,0)) x1 + (6,4,0,18) 2. lexicographic path order with precedence: precedence: a__f > f > a__f# > cons > p > a__p# > s > mark# > mark > |0| > a__p argument filter: pi(a__f#) = [] pi(s) = 1 pi(|0|) = [] pi(a__p) = 1 pi(a__p#) = [1] pi(mark#) = 1 pi(cons) = [1] pi(p) = 1 pi(mark) = 1 pi(f) = [] pi(a__f) = [] The next rules are strictly ordered: p2, p3, p4, p5, p6, p7, p8, p9 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(s(|0|())) -> a__f#(a__p(s(|0|()))) and R consists of: r1: a__f(|0|()) -> cons(|0|(),f(s(|0|()))) r2: a__f(s(|0|())) -> a__f(a__p(s(|0|()))) r3: a__p(s(X)) -> mark(X) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(p(X)) -> a__p(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(cons(X1,X2)) -> cons(mark(X1),X2) r8: mark(s(X)) -> s(mark(X)) r9: a__f(X) -> f(X) r10: a__p(X) -> p(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(s(|0|())) -> a__f#(a__p(s(|0|()))) and R consists of: r1: a__f(|0|()) -> cons(|0|(),f(s(|0|()))) r2: a__f(s(|0|())) -> a__f(a__p(s(|0|()))) r3: a__p(s(X)) -> mark(X) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(p(X)) -> a__p(mark(X)) r6: mark(|0|()) -> |0|() r7: mark(cons(X1,X2)) -> cons(mark(X1),X2) r8: mark(s(X)) -> s(mark(X)) r9: a__f(X) -> f(X) r10: a__p(X) -> p(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: a__f#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,0,1,1)) x1 s_A(x1) = ((1,0,0,0),(0,0,0,0),(0,0,0,0),(0,1,0,0)) x1 + (3,1,4,4) |0|_A() = (1,3,1,1) a__p_A(x1) = x1 + (0,1,3,7) a__f_A(x1) = (2,0,4,7) cons_A(x1,x2) = ((0,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x1 + ((0,0,0,0),(1,0,0,0),(0,0,0,0),(0,1,0,0)) x2 + (1,1,0,1) f_A(x1) = ((0,0,0,0),(1,0,0,0),(1,0,0,0),(1,1,0,0)) x1 + (1,1,1,8) mark_A(x1) = x1 + (2,2,3,7) p_A(x1) = ((1,0,0,0),(0,0,0,0),(1,1,0,0),(0,0,0,0)) x1 + (0,0,4,7) 2. lexicographic path order with precedence: precedence: a__f# > s > a__p > mark > p > f > cons > a__f > |0| argument filter: pi(a__f#) = 1 pi(s) = [] pi(|0|) = [] pi(a__p) = [] pi(a__f) = [] pi(cons) = [] pi(f) = [] pi(mark) = [] pi(p) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.