YES We show the termination of the TRS R: f(X) -> if(X,c(),n__f(n__true())) if(true(),X,Y) -> X if(false(),X,Y) -> activate(Y) f(X) -> n__f(X) true() -> n__true() activate(n__f(X)) -> f(activate(X)) activate(n__true()) -> true() activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(X) -> if#(X,c(),n__f(n__true())) p2: if#(false(),X,Y) -> activate#(Y) p3: activate#(n__f(X)) -> f#(activate(X)) p4: activate#(n__f(X)) -> activate#(X) p5: activate#(n__true()) -> true#() and R consists of: r1: f(X) -> if(X,c(),n__f(n__true())) r2: if(true(),X,Y) -> X r3: if(false(),X,Y) -> activate(Y) r4: f(X) -> n__f(X) r5: true() -> n__true() r6: activate(n__f(X)) -> f(activate(X)) r7: activate(n__true()) -> true() r8: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(X) -> if#(X,c(),n__f(n__true())) p2: if#(false(),X,Y) -> activate#(Y) p3: activate#(n__f(X)) -> activate#(X) p4: activate#(n__f(X)) -> f#(activate(X)) and R consists of: r1: f(X) -> if(X,c(),n__f(n__true())) r2: if(true(),X,Y) -> X r3: if(false(),X,Y) -> activate(Y) r4: f(X) -> n__f(X) r5: true() -> n__true() r6: activate(n__f(X)) -> f(activate(X)) r7: activate(n__true()) -> true() r8: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: f#_A(x1) = ((1,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,0,0)) x1 + (8,3,0,8) if#_A(x1,x2,x3) = ((1,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x1 + ((1,0,0,0),(0,1,0,0),(0,0,0,0),(1,1,0,0)) x3 + (0,0,3,0) c_A() = (0,1,1,1) n__f_A(x1) = ((1,0,0,0),(1,1,0,0),(0,0,0,0),(0,1,0,0)) x1 + (7,1,1,1) n__true_A() = (0,1,1,1) false_A() = (6,1,1,1) activate#_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,0,0),(0,1,0,0)) x1 + (4,5,2,6) activate_A(x1) = ((1,0,0,0),(1,1,0,0),(0,0,1,0),(0,0,0,1)) x1 + (2,1,1,4) if_A(x1,x2,x3) = x1 + x2 + x3 + (0,2,2,1) true_A() = (1,3,3,6) f_A(x1) = ((1,0,0,0),(1,1,0,0),(0,0,0,0),(0,0,0,0)) x1 + (7,5,4,4) 2. lexicographic path order with precedence: precedence: false > activate > f > c > if# > activate# > n__f > if > n__true > f# > true argument filter: pi(f#) = [] pi(if#) = [] pi(c) = [] pi(n__f) = [] pi(n__true) = [] pi(false) = [] pi(activate#) = [] pi(activate) = 1 pi(if) = 3 pi(true) = [] pi(f) = [] The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains.