YES We show the termination of the TRS R: from(X) -> cons(X,n__from(n__s(X))) first(|0|(),Z) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) sel(|0|(),cons(X,Z)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) from(X) -> n__from(X) s(X) -> n__s(X) first(X1,X2) -> n__first(X1,X2) activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z)) p3: sel#(s(X),cons(Y,Z)) -> activate#(Z) p4: activate#(n__from(X)) -> from#(activate(X)) p5: activate#(n__from(X)) -> activate#(X) p6: activate#(n__s(X)) -> s#(activate(X)) p7: activate#(n__s(X)) -> activate#(X) p8: activate#(n__first(X1,X2)) -> first#(activate(X1),activate(X2)) p9: activate#(n__first(X1,X2)) -> activate#(X1) p10: activate#(n__first(X1,X2)) -> activate#(X2) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: s(X) -> n__s(X) r8: first(X1,X2) -> n__first(X1,X2) r9: activate(n__from(X)) -> from(activate(X)) r10: activate(n__s(X)) -> s(activate(X)) r11: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r12: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2} {p1, p5, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z)) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: s(X) -> n__s(X) r8: first(X1,X2) -> n__first(X1,X2) r9: activate(n__from(X)) -> from(activate(X)) r10: activate(n__s(X)) -> s(activate(X)) r11: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r12: activate(X) -> X The set of usable rules consists of r1, r2, r3, r6, r7, r8, r9, r10, r11, r12 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: sel#_A(x1,x2) = ((0,0,0,0),(1,0,0,0),(0,1,0,0),(1,1,1,0)) x1 + ((0,0,0,0),(1,0,0,0),(0,1,0,0),(0,1,1,0)) x2 s_A(x1) = ((1,0,0,0),(0,1,0,0),(1,1,1,0),(0,1,1,0)) x1 + (3,2,1,4) cons_A(x1,x2) = ((0,0,0,0),(1,0,0,0),(1,1,0,0),(1,0,0,0)) x1 + ((1,0,0,0),(1,1,0,0),(1,0,1,0),(0,0,0,1)) x2 + (3,1,1,4) activate_A(x1) = ((1,0,0,0),(1,1,0,0),(1,0,1,0),(0,0,0,1)) x1 + (5,0,0,2) from_A(x1) = ((0,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x1 + (11,2,1,4) n__from_A(x1) = ((0,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x1 + (7,1,0,1) n__s_A(x1) = x1 + (3,1,2,1) first_A(x1,x2) = ((0,0,0,0),(1,0,0,0),(1,1,0,0),(0,1,0,0)) x1 + (11,2,0,1) |0|_A() = (1,1,0,1) nil_A() = (0,4,3,0) n__first_A(x1,x2) = ((0,0,0,0),(1,0,0,0),(1,1,0,0),(0,0,0,0)) x1 + ((0,0,0,0),(1,0,0,0),(1,1,0,0),(0,0,0,0)) x2 + (7,1,0,0) 2. lexicographic path order with precedence: precedence: cons > from > activate > s > n__s > first > n__first > nil > |0| > n__from > sel# argument filter: pi(sel#) = [] pi(s) = [] pi(cons) = [] pi(activate) = [1] pi(from) = [] pi(n__from) = [] pi(n__s) = [] pi(first) = [] pi(|0|) = [] pi(nil) = [] pi(n__first) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: activate#(n__first(X1,X2)) -> activate#(X2) p3: activate#(n__first(X1,X2)) -> activate#(X1) p4: activate#(n__first(X1,X2)) -> first#(activate(X1),activate(X2)) p5: activate#(n__s(X)) -> activate#(X) p6: activate#(n__from(X)) -> activate#(X) and R consists of: r1: from(X) -> cons(X,n__from(n__s(X))) r2: first(|0|(),Z) -> nil() r3: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r4: sel(|0|(),cons(X,Z)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: from(X) -> n__from(X) r7: s(X) -> n__s(X) r8: first(X1,X2) -> n__first(X1,X2) r9: activate(n__from(X)) -> from(activate(X)) r10: activate(n__s(X)) -> s(activate(X)) r11: activate(n__first(X1,X2)) -> first(activate(X1),activate(X2)) r12: activate(X) -> X The set of usable rules consists of r1, r2, r3, r6, r7, r8, r9, r10, r11, r12 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: first#_A(x1,x2) = x1 + x2 + (1,2,0,0) s_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,0,0),(0,0,1,0)) x1 + (0,1,2,12) cons_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,1,1,1)) x2 + (0,1,2,1) activate#_A(x1) = ((1,0,0,0),(0,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (0,0,3,0) n__first_A(x1,x2) = ((1,0,0,0),(0,0,0,0),(1,1,0,0),(1,0,1,0)) x1 + ((1,0,0,0),(1,0,0,0),(1,1,0,0),(1,0,0,0)) x2 + (2,9,1,1) activate_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,0,0),(0,1,0,0)) x1 + (0,3,1,12) n__s_A(x1) = ((1,0,0,0),(0,1,0,0),(0,0,0,0),(0,1,0,0)) x1 + (0,1,1,13) n__from_A(x1) = ((1,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x1 + (1,0,1,8) from_A(x1) = ((1,0,0,0),(1,0,0,0),(1,1,0,0),(1,1,0,0)) x1 + (1,2,2,10) first_A(x1,x2) = ((1,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x1 + ((1,0,0,0),(1,0,0,0),(0,0,0,0),(0,1,0,0)) x2 + (2,11,5,17) |0|_A() = (1,0,0,1) nil_A() = (0,0,0,19) 2. lexicographic path order with precedence: precedence: nil > activate > first > from > n__from > s > n__first > first# > |0| > n__s > activate# > cons argument filter: pi(first#) = [2] pi(s) = [] pi(cons) = 2 pi(activate#) = 1 pi(n__first) = [] pi(activate) = [] pi(n__s) = [] pi(n__from) = [] pi(from) = [] pi(first) = [] pi(|0|) = [] pi(nil) = [] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6 We remove them from the problem. Then no dependency pair remains.