YES We show the termination of the TRS R: and(x,false()) -> false() and(x,not(false())) -> x not(not(x)) -> x implies(false(),y) -> not(false()) implies(x,false()) -> not(x) implies(not(x),not(y)) -> implies(y,and(x,y)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: implies#(false(),y) -> not#(false()) p2: implies#(x,false()) -> not#(x) p3: implies#(not(x),not(y)) -> implies#(y,and(x,y)) p4: implies#(not(x),not(y)) -> and#(x,y) and R consists of: r1: and(x,false()) -> false() r2: and(x,not(false())) -> x r3: not(not(x)) -> x r4: implies(false(),y) -> not(false()) r5: implies(x,false()) -> not(x) r6: implies(not(x),not(y)) -> implies(y,and(x,y)) The estimated dependency graph contains the following SCCs: {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: implies#(not(x),not(y)) -> implies#(y,and(x,y)) and R consists of: r1: and(x,false()) -> false() r2: and(x,not(false())) -> x r3: not(not(x)) -> x r4: implies(false(),y) -> not(false()) r5: implies(x,false()) -> not(x) r6: implies(not(x),not(y)) -> implies(y,and(x,y)) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: implies#_A(x1,x2) = ((0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)) x1 + ((0,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x2 not_A(x1) = ((1,0,0,0),(1,1,0,0),(0,1,0,0),(0,0,0,0)) x1 + (3,1,1,1) and_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,0,1,0),(1,1,1,1)) x1 + (4,1,2,2) false_A() = (2,2,1,1) 2. lexicographic path order with precedence: precedence: not > implies# > and > false argument filter: pi(implies#) = [] pi(not) = [] pi(and) = [1] pi(false) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.