YES We show the termination of the TRS R: f(a(),f(a(),x)) -> f(x,f(a(),f(f(a(),a()),a()))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(a(),x)) -> f#(x,f(a(),f(f(a(),a()),a()))) p2: f#(a(),f(a(),x)) -> f#(a(),f(f(a(),a()),a())) p3: f#(a(),f(a(),x)) -> f#(f(a(),a()),a()) p4: f#(a(),f(a(),x)) -> f#(a(),a()) and R consists of: r1: f(a(),f(a(),x)) -> f(x,f(a(),f(f(a(),a()),a()))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(a(),x)) -> f#(x,f(a(),f(f(a(),a()),a()))) and R consists of: r1: f(a(),f(a(),x)) -> f(x,f(a(),f(f(a(),a()),a()))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^3 order: lexicographic order interpretations: f#_A(x1,x2) = ((0,0,0),(0,0,0),(1,0,0)) x1 + ((0,0,0),(1,0,0),(0,1,0)) x2 a_A() = (2,1,0) f_A(x1,x2) = ((0,0,0),(0,0,0),(1,0,0)) x1 + ((0,0,0),(1,0,0),(0,0,0)) x2 + (1,1,0) 2. lexicographic path order with precedence: precedence: a > f# > f argument filter: pi(f#) = [] pi(a) = [] pi(f) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.