YES We show the termination of the TRS R: U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2)) U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2)) U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2)) U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2)) U15(tt(),V2) -> U16(isNat(activate(V2))) U16(tt()) -> tt() U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1)) U22(tt(),V1) -> U23(isNat(activate(V1))) U23(tt()) -> tt() U31(tt(),V2) -> U32(isNatKind(activate(V2))) U32(tt()) -> tt() U41(tt()) -> tt() U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N)) U52(tt(),N) -> activate(N) U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N)) U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N)) U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N)) U64(tt(),M,N) -> s(plus(activate(N),activate(M))) isNat(n__0()) -> tt() isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2)) isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1)) isNatKind(n__0()) -> tt() isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2)) isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1))) plus(N,|0|()) -> U51(isNat(N),N) plus(N,s(M)) -> U61(isNat(M),M,N) |0|() -> n__0() plus(X1,X2) -> n__plus(X1,X2) s(X) -> n__s(X) activate(n__0()) -> |0|() activate(n__plus(X1,X2)) -> plus(X1,X2) activate(n__s(X)) -> s(X) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2)) p2: U11#(tt(),V1,V2) -> isNatKind#(activate(V1)) p3: U11#(tt(),V1,V2) -> activate#(V1) p4: U11#(tt(),V1,V2) -> activate#(V2) p5: U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2)) p6: U12#(tt(),V1,V2) -> isNatKind#(activate(V2)) p7: U12#(tt(),V1,V2) -> activate#(V2) p8: U12#(tt(),V1,V2) -> activate#(V1) p9: U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2)) p10: U13#(tt(),V1,V2) -> isNatKind#(activate(V2)) p11: U13#(tt(),V1,V2) -> activate#(V2) p12: U13#(tt(),V1,V2) -> activate#(V1) p13: U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2)) p14: U14#(tt(),V1,V2) -> isNat#(activate(V1)) p15: U14#(tt(),V1,V2) -> activate#(V1) p16: U14#(tt(),V1,V2) -> activate#(V2) p17: U15#(tt(),V2) -> U16#(isNat(activate(V2))) p18: U15#(tt(),V2) -> isNat#(activate(V2)) p19: U15#(tt(),V2) -> activate#(V2) p20: U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1)) p21: U21#(tt(),V1) -> isNatKind#(activate(V1)) p22: U21#(tt(),V1) -> activate#(V1) p23: U22#(tt(),V1) -> U23#(isNat(activate(V1))) p24: U22#(tt(),V1) -> isNat#(activate(V1)) p25: U22#(tt(),V1) -> activate#(V1) p26: U31#(tt(),V2) -> U32#(isNatKind(activate(V2))) p27: U31#(tt(),V2) -> isNatKind#(activate(V2)) p28: U31#(tt(),V2) -> activate#(V2) p29: U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N)) p30: U51#(tt(),N) -> isNatKind#(activate(N)) p31: U51#(tt(),N) -> activate#(N) p32: U52#(tt(),N) -> activate#(N) p33: U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N)) p34: U61#(tt(),M,N) -> isNatKind#(activate(M)) p35: U61#(tt(),M,N) -> activate#(M) p36: U61#(tt(),M,N) -> activate#(N) p37: U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N)) p38: U62#(tt(),M,N) -> isNat#(activate(N)) p39: U62#(tt(),M,N) -> activate#(N) p40: U62#(tt(),M,N) -> activate#(M) p41: U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N)) p42: U63#(tt(),M,N) -> isNatKind#(activate(N)) p43: U63#(tt(),M,N) -> activate#(N) p44: U63#(tt(),M,N) -> activate#(M) p45: U64#(tt(),M,N) -> s#(plus(activate(N),activate(M))) p46: U64#(tt(),M,N) -> plus#(activate(N),activate(M)) p47: U64#(tt(),M,N) -> activate#(N) p48: U64#(tt(),M,N) -> activate#(M) p49: isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2)) p50: isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1)) p51: isNat#(n__plus(V1,V2)) -> activate#(V1) p52: isNat#(n__plus(V1,V2)) -> activate#(V2) p53: isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1)) p54: isNat#(n__s(V1)) -> isNatKind#(activate(V1)) p55: isNat#(n__s(V1)) -> activate#(V1) p56: isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2)) p57: isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1)) p58: isNatKind#(n__plus(V1,V2)) -> activate#(V1) p59: isNatKind#(n__plus(V1,V2)) -> activate#(V2) p60: isNatKind#(n__s(V1)) -> U41#(isNatKind(activate(V1))) p61: isNatKind#(n__s(V1)) -> isNatKind#(activate(V1)) p62: isNatKind#(n__s(V1)) -> activate#(V1) p63: plus#(N,|0|()) -> U51#(isNat(N),N) p64: plus#(N,|0|()) -> isNat#(N) p65: plus#(N,s(M)) -> U61#(isNat(M),M,N) p66: plus#(N,s(M)) -> isNat#(M) p67: activate#(n__0()) -> |0|#() p68: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p69: activate#(n__s(X)) -> s#(X) and R consists of: r1: U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2)) r2: U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2)) r3: U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2)) r4: U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2)) r5: U15(tt(),V2) -> U16(isNat(activate(V2))) r6: U16(tt()) -> tt() r7: U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1)) r8: U22(tt(),V1) -> U23(isNat(activate(V1))) r9: U23(tt()) -> tt() r10: U31(tt(),V2) -> U32(isNatKind(activate(V2))) r11: U32(tt()) -> tt() r12: U41(tt()) -> tt() r13: U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N)) r14: U52(tt(),N) -> activate(N) r15: U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N)) r16: U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N)) r17: U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N)) r18: U64(tt(),M,N) -> s(plus(activate(N),activate(M))) r19: isNat(n__0()) -> tt() r20: isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2)) r21: isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1)) r22: isNatKind(n__0()) -> tt() r23: isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2)) r24: isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1))) r25: plus(N,|0|()) -> U51(isNat(N),N) r26: plus(N,s(M)) -> U61(isNat(M),M,N) r27: |0|() -> n__0() r28: plus(X1,X2) -> n__plus(X1,X2) r29: s(X) -> n__s(X) r30: activate(n__0()) -> |0|() r31: activate(n__plus(X1,X2)) -> plus(X1,X2) r32: activate(n__s(X)) -> s(X) r33: activate(X) -> X The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p18, p19, p20, p21, p22, p24, p25, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p37, p38, p39, p40, p41, p42, p43, p44, p46, p47, p48, p49, p50, p51, p52, p53, p54, p55, p56, p57, p58, p59, p61, p62, p63, p64, p65, p66, p68} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2)) p2: U12#(tt(),V1,V2) -> activate#(V1) p3: activate#(n__plus(X1,X2)) -> plus#(X1,X2) p4: plus#(N,s(M)) -> isNat#(M) p5: isNat#(n__s(V1)) -> activate#(V1) p6: isNat#(n__s(V1)) -> isNatKind#(activate(V1)) p7: isNatKind#(n__s(V1)) -> activate#(V1) p8: isNatKind#(n__s(V1)) -> isNatKind#(activate(V1)) p9: isNatKind#(n__plus(V1,V2)) -> activate#(V2) p10: isNatKind#(n__plus(V1,V2)) -> activate#(V1) p11: isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1)) p12: isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2)) p13: U31#(tt(),V2) -> activate#(V2) p14: U31#(tt(),V2) -> isNatKind#(activate(V2)) p15: isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1)) p16: U21#(tt(),V1) -> activate#(V1) p17: U21#(tt(),V1) -> isNatKind#(activate(V1)) p18: U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1)) p19: U22#(tt(),V1) -> activate#(V1) p20: U22#(tt(),V1) -> isNat#(activate(V1)) p21: isNat#(n__plus(V1,V2)) -> activate#(V2) p22: isNat#(n__plus(V1,V2)) -> activate#(V1) p23: isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1)) p24: isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2)) p25: U11#(tt(),V1,V2) -> activate#(V2) p26: U11#(tt(),V1,V2) -> activate#(V1) p27: U11#(tt(),V1,V2) -> isNatKind#(activate(V1)) p28: plus#(N,s(M)) -> U61#(isNat(M),M,N) p29: U61#(tt(),M,N) -> activate#(N) p30: U61#(tt(),M,N) -> activate#(M) p31: U61#(tt(),M,N) -> isNatKind#(activate(M)) p32: U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N)) p33: U62#(tt(),M,N) -> activate#(M) p34: U62#(tt(),M,N) -> activate#(N) p35: U62#(tt(),M,N) -> isNat#(activate(N)) p36: U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N)) p37: U63#(tt(),M,N) -> activate#(M) p38: U63#(tt(),M,N) -> activate#(N) p39: U63#(tt(),M,N) -> isNatKind#(activate(N)) p40: U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N)) p41: U64#(tt(),M,N) -> activate#(M) p42: U64#(tt(),M,N) -> activate#(N) p43: U64#(tt(),M,N) -> plus#(activate(N),activate(M)) p44: plus#(N,|0|()) -> isNat#(N) p45: plus#(N,|0|()) -> U51#(isNat(N),N) p46: U51#(tt(),N) -> activate#(N) p47: U51#(tt(),N) -> isNatKind#(activate(N)) p48: U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N)) p49: U52#(tt(),N) -> activate#(N) p50: U12#(tt(),V1,V2) -> activate#(V2) p51: U12#(tt(),V1,V2) -> isNatKind#(activate(V2)) p52: U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2)) p53: U13#(tt(),V1,V2) -> activate#(V1) p54: U13#(tt(),V1,V2) -> activate#(V2) p55: U13#(tt(),V1,V2) -> isNatKind#(activate(V2)) p56: U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2)) p57: U14#(tt(),V1,V2) -> activate#(V2) p58: U14#(tt(),V1,V2) -> activate#(V1) p59: U14#(tt(),V1,V2) -> isNat#(activate(V1)) p60: U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2)) p61: U15#(tt(),V2) -> activate#(V2) p62: U15#(tt(),V2) -> isNat#(activate(V2)) and R consists of: r1: U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2)) r2: U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2)) r3: U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2)) r4: U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2)) r5: U15(tt(),V2) -> U16(isNat(activate(V2))) r6: U16(tt()) -> tt() r7: U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1)) r8: U22(tt(),V1) -> U23(isNat(activate(V1))) r9: U23(tt()) -> tt() r10: U31(tt(),V2) -> U32(isNatKind(activate(V2))) r11: U32(tt()) -> tt() r12: U41(tt()) -> tt() r13: U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N)) r14: U52(tt(),N) -> activate(N) r15: U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N)) r16: U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N)) r17: U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N)) r18: U64(tt(),M,N) -> s(plus(activate(N),activate(M))) r19: isNat(n__0()) -> tt() r20: isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2)) r21: isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1)) r22: isNatKind(n__0()) -> tt() r23: isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2)) r24: isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1))) r25: plus(N,|0|()) -> U51(isNat(N),N) r26: plus(N,s(M)) -> U61(isNat(M),M,N) r27: |0|() -> n__0() r28: plus(X1,X2) -> n__plus(X1,X2) r29: s(X) -> n__s(X) r30: activate(n__0()) -> |0|() r31: activate(n__plus(X1,X2)) -> plus(X1,X2) r32: activate(n__s(X)) -> s(X) r33: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^3 order: lexicographic order interpretations: U11#_A(x1,x2,x3) = ((1,0,0),(0,0,0),(1,0,0)) x2 + ((1,0,0),(0,1,0),(0,1,1)) x3 + (5,0,40) tt_A() = (7,8,66) U12#_A(x1,x2,x3) = ((0,0,0),(0,0,0),(1,0,0)) x1 + x2 + ((1,0,0),(1,1,0),(0,1,1)) x3 + (4,0,37) isNatKind_A(x1) = ((1,0,0),(1,1,0),(0,0,0)) x1 + (2,20,67) activate_A(x1) = x1 + (0,11,17) activate#_A(x1) = ((1,0,0),(1,1,0),(0,0,1)) x1 + (0,35,43) n__plus_A(x1,x2) = ((1,0,0),(1,1,0),(1,0,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 + (12,33,20) plus#_A(x1,x2) = ((1,0,0),(1,1,0),(0,0,1)) x1 + ((1,0,0),(0,0,0),(0,1,0)) x2 + (0,27,0) s_A(x1) = x1 + (7,34,21) isNat#_A(x1) = ((1,0,0),(1,1,0),(1,0,1)) x1 + (0,26,35) n__s_A(x1) = x1 + (7,33,20) isNatKind#_A(x1) = x1 + (0,3,24) U31#_A(x1,x2) = ((1,0,0),(0,0,0),(1,0,0)) x1 + ((1,0,0),(1,1,0),(0,1,1)) x2 + (0,34,35) U21#_A(x1,x2) = ((0,0,0),(1,0,0),(0,1,0)) x1 + x2 + (2,8,32) U22#_A(x1,x2) = ((0,0,0),(1,0,0),(0,1,0)) x1 + ((1,0,0),(1,0,0),(1,0,0)) x2 + (1,29,36) U61#_A(x1,x2,x3) = ((1,0,0),(1,1,0),(0,0,1)) x2 + ((1,0,0),(1,1,0),(0,0,0)) x3 + (4,34,0) isNat_A(x1) = ((1,0,0),(0,0,0),(0,1,0)) x1 + (1,32,0) U62#_A(x1,x2,x3) = ((0,0,0),(1,0,0),(0,0,0)) x1 + ((1,0,0),(0,1,0),(1,0,0)) x2 + ((1,0,0),(0,0,0),(1,1,0)) x3 + (3,20,42) U63#_A(x1,x2,x3) = ((0,0,0),(0,0,0),(1,0,0)) x1 + x2 + x3 + (2,15,37) U64#_A(x1,x2,x3) = ((0,0,0),(1,0,0),(1,1,0)) x1 + ((1,0,0),(0,0,0),(1,0,0)) x2 + ((1,0,0),(0,0,0),(1,0,0)) x3 + (1,12,12) |0|_A() = (6,66,0) U51#_A(x1,x2) = ((0,0,0),(1,0,0),(0,1,0)) x1 + ((1,0,0),(1,1,0),(0,0,1)) x2 + (2,27,34) U52#_A(x1,x2) = ((0,0,0),(1,0,0),(0,0,0)) x1 + x2 + (1,20,41) U13#_A(x1,x2,x3) = ((0,0,0),(1,0,0),(1,1,0)) x1 + ((1,0,0),(1,1,0),(0,0,1)) x2 + ((1,0,0),(1,1,0),(0,0,0)) x3 + (3,6,25) U14#_A(x1,x2,x3) = ((0,0,0),(0,0,0),(1,0,0)) x1 + ((1,0,0),(0,0,0),(1,0,0)) x2 + ((1,0,0),(1,0,0),(0,0,0)) x3 + (2,12,37) U15#_A(x1,x2) = ((0,0,0),(0,0,0),(1,0,0)) x1 + x2 + (1,0,27) U16_A(x1) = ((0,0,0),(1,0,0),(0,0,0)) x1 + (8,0,67) U15_A(x1,x2) = ((0,0,0),(0,0,0),(1,0,0)) x1 + (9,2,57) U64_A(x1,x2,x3) = x2 + x3 + (19,35,8) plus_A(x1,x2) = ((1,0,0),(1,1,0),(1,0,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 + (12,33,20) U14_A(x1,x2,x3) = ((0,0,0),(0,0,0),(1,0,0)) x1 + (9,7,50) U63_A(x1,x2,x3) = ((0,0,0),(0,0,0),(1,0,0)) x1 + x2 + x3 + (19,36,0) U13_A(x1,x2,x3) = ((0,0,0),(1,0,0),(1,0,0)) x1 + (10,0,44) U23_A(x1) = ((0,0,0),(1,0,0),(0,0,0)) x1 + (8,2,67) U52_A(x1,x2) = ((0,0,0),(1,0,0),(1,0,0)) x1 + ((1,0,0),(0,0,0),(0,1,0)) x2 + (1,5,11) U62_A(x1,x2,x3) = x2 + ((1,0,0),(0,1,0),(1,0,1)) x3 + (19,37,2) U12_A(x1,x2,x3) = ((0,0,0),(0,0,0),(1,0,0)) x1 + ((0,0,0),(1,0,0),(0,0,0)) x3 + (11,3,38) U22_A(x1,x2) = ((0,0,0),(1,0,0),(0,0,0)) x2 + (11,4,68) U32_A(x1) = ((0,0,0),(0,0,0),(1,0,0)) x1 + (8,67,60) U51_A(x1,x2) = ((1,0,0),(1,1,0),(0,0,1)) x2 + (2,8,0) U61_A(x1,x2,x3) = ((0,0,0),(1,0,0),(1,0,0)) x1 + x2 + ((1,0,0),(0,1,0),(1,0,1)) x3 + (19,42,13) U11_A(x1,x2,x3) = ((0,0,0),(0,0,0),(1,0,0)) x1 + ((1,0,0),(1,0,0),(0,0,0)) x3 + (12,4,32) U21_A(x1,x2) = x1 + ((0,0,0),(1,0,0),(0,0,0)) x2 + (5,0,32) U31_A(x1,x2) = ((1,0,0),(0,0,0),(1,1,0)) x1 + ((0,0,0),(1,0,0),(0,0,0)) x2 + (2,66,35) U41_A(x1) = (8,60,66) n__0_A() = (6,66,0) 2. lexicographic path order with precedence: precedence: U12# > U31# > U63# > U61# > U51 > n__plus > isNat# > U14 > U64 > n__s > s > U61 > U62 > U16 > U13# > U51# > activate > |0| > plus > isNatKind# > U52# > activate# > plus# > isNat > isNatKind > U11 > U15# > U21 > n__0 > U31 > U12 > U22 > U23 > tt > U32 > U41 > U22# > U63 > U14# > U62# > U15 > U13 > U52 > U21# > U64# > U11# argument filter: pi(U11#) = 3 pi(tt) = [] pi(U12#) = 2 pi(isNatKind) = [] pi(activate) = [1] pi(activate#) = 1 pi(n__plus) = 1 pi(plus#) = 1 pi(s) = [] pi(isNat#) = 1 pi(n__s) = [] pi(isNatKind#) = [1] pi(U31#) = 2 pi(U21#) = [] pi(U22#) = [] pi(U61#) = [2] pi(isNat) = [] pi(U62#) = [] pi(U63#) = [] pi(U64#) = [] pi(|0|) = [] pi(U51#) = [2] pi(U52#) = [] pi(U13#) = [2] pi(U14#) = [] pi(U15#) = [2] pi(U16) = [] pi(U15) = [] pi(U64) = [] pi(plus) = [1] pi(U14) = [] pi(U63) = [] pi(U13) = [] pi(U23) = [] pi(U52) = [] pi(U62) = [3] pi(U12) = [] pi(U22) = [] pi(U32) = [] pi(U51) = 2 pi(U61) = 3 pi(U11) = [] pi(U21) = [] pi(U31) = [] pi(U41) = [] pi(n__0) = [] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p37, p38, p39, p40, p41, p42, p43, p44, p45, p46, p47, p48, p49, p50, p51, p52, p53, p54, p55, p56, p57, p58, p59, p60, p61, p62 We remove them from the problem. Then no dependency pair remains.