YES We show the termination of the TRS R: __(__(X,Y),Z) -> __(X,__(Y,Z)) __(X,nil()) -> X __(nil(),X) -> X U11(tt(),V) -> U12(isNeList(activate(V))) U12(tt()) -> tt() U21(tt(),V1,V2) -> U22(isList(activate(V1)),activate(V2)) U22(tt(),V2) -> U23(isList(activate(V2))) U23(tt()) -> tt() U31(tt(),V) -> U32(isQid(activate(V))) U32(tt()) -> tt() U41(tt(),V1,V2) -> U42(isList(activate(V1)),activate(V2)) U42(tt(),V2) -> U43(isNeList(activate(V2))) U43(tt()) -> tt() U51(tt(),V1,V2) -> U52(isNeList(activate(V1)),activate(V2)) U52(tt(),V2) -> U53(isList(activate(V2))) U53(tt()) -> tt() U61(tt(),V) -> U62(isQid(activate(V))) U62(tt()) -> tt() U71(tt(),V) -> U72(isNePal(activate(V))) U72(tt()) -> tt() and(tt(),X) -> activate(X) isList(V) -> U11(isPalListKind(activate(V)),activate(V)) isList(n__nil()) -> tt() isList(n____(V1,V2)) -> U21(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) isNeList(V) -> U31(isPalListKind(activate(V)),activate(V)) isNeList(n____(V1,V2)) -> U41(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) isNeList(n____(V1,V2)) -> U51(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) isNePal(V) -> U61(isPalListKind(activate(V)),activate(V)) isNePal(n____(I,__(P,I))) -> and(and(isQid(activate(I)),n__isPalListKind(activate(I))),n__and(isPal(activate(P)),n__isPalListKind(activate(P)))) isPal(V) -> U71(isPalListKind(activate(V)),activate(V)) isPal(n__nil()) -> tt() isPalListKind(n__a()) -> tt() isPalListKind(n__e()) -> tt() isPalListKind(n__i()) -> tt() isPalListKind(n__nil()) -> tt() isPalListKind(n__o()) -> tt() isPalListKind(n__u()) -> tt() isPalListKind(n____(V1,V2)) -> and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() __(X1,X2) -> n____(X1,X2) isPalListKind(X) -> n__isPalListKind(X) and(X1,X2) -> n__and(X1,X2) a() -> n__a() e() -> n__e() i() -> n__i() o() -> n__o() u() -> n__u() activate(n__nil()) -> nil() activate(n____(X1,X2)) -> __(X1,X2) activate(n__isPalListKind(X)) -> isPalListKind(X) activate(n__and(X1,X2)) -> and(X1,X2) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__o()) -> o() activate(n__u()) -> u() activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) p2: __#(__(X,Y),Z) -> __#(Y,Z) p3: U11#(tt(),V) -> U12#(isNeList(activate(V))) p4: U11#(tt(),V) -> isNeList#(activate(V)) p5: U11#(tt(),V) -> activate#(V) p6: U21#(tt(),V1,V2) -> U22#(isList(activate(V1)),activate(V2)) p7: U21#(tt(),V1,V2) -> isList#(activate(V1)) p8: U21#(tt(),V1,V2) -> activate#(V1) p9: U21#(tt(),V1,V2) -> activate#(V2) p10: U22#(tt(),V2) -> U23#(isList(activate(V2))) p11: U22#(tt(),V2) -> isList#(activate(V2)) p12: U22#(tt(),V2) -> activate#(V2) p13: U31#(tt(),V) -> U32#(isQid(activate(V))) p14: U31#(tt(),V) -> isQid#(activate(V)) p15: U31#(tt(),V) -> activate#(V) p16: U41#(tt(),V1,V2) -> U42#(isList(activate(V1)),activate(V2)) p17: U41#(tt(),V1,V2) -> isList#(activate(V1)) p18: U41#(tt(),V1,V2) -> activate#(V1) p19: U41#(tt(),V1,V2) -> activate#(V2) p20: U42#(tt(),V2) -> U43#(isNeList(activate(V2))) p21: U42#(tt(),V2) -> isNeList#(activate(V2)) p22: U42#(tt(),V2) -> activate#(V2) p23: U51#(tt(),V1,V2) -> U52#(isNeList(activate(V1)),activate(V2)) p24: U51#(tt(),V1,V2) -> isNeList#(activate(V1)) p25: U51#(tt(),V1,V2) -> activate#(V1) p26: U51#(tt(),V1,V2) -> activate#(V2) p27: U52#(tt(),V2) -> U53#(isList(activate(V2))) p28: U52#(tt(),V2) -> isList#(activate(V2)) p29: U52#(tt(),V2) -> activate#(V2) p30: U61#(tt(),V) -> U62#(isQid(activate(V))) p31: U61#(tt(),V) -> isQid#(activate(V)) p32: U61#(tt(),V) -> activate#(V) p33: U71#(tt(),V) -> U72#(isNePal(activate(V))) p34: U71#(tt(),V) -> isNePal#(activate(V)) p35: U71#(tt(),V) -> activate#(V) p36: and#(tt(),X) -> activate#(X) p37: isList#(V) -> U11#(isPalListKind(activate(V)),activate(V)) p38: isList#(V) -> isPalListKind#(activate(V)) p39: isList#(V) -> activate#(V) p40: isList#(n____(V1,V2)) -> U21#(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) p41: isList#(n____(V1,V2)) -> and#(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) p42: isList#(n____(V1,V2)) -> isPalListKind#(activate(V1)) p43: isList#(n____(V1,V2)) -> activate#(V1) p44: isList#(n____(V1,V2)) -> activate#(V2) p45: isNeList#(V) -> U31#(isPalListKind(activate(V)),activate(V)) p46: isNeList#(V) -> isPalListKind#(activate(V)) p47: isNeList#(V) -> activate#(V) p48: isNeList#(n____(V1,V2)) -> U41#(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) p49: isNeList#(n____(V1,V2)) -> and#(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) p50: isNeList#(n____(V1,V2)) -> isPalListKind#(activate(V1)) p51: isNeList#(n____(V1,V2)) -> activate#(V1) p52: isNeList#(n____(V1,V2)) -> activate#(V2) p53: isNeList#(n____(V1,V2)) -> U51#(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) p54: isNeList#(n____(V1,V2)) -> and#(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) p55: isNeList#(n____(V1,V2)) -> isPalListKind#(activate(V1)) p56: isNeList#(n____(V1,V2)) -> activate#(V1) p57: isNeList#(n____(V1,V2)) -> activate#(V2) p58: isNePal#(V) -> U61#(isPalListKind(activate(V)),activate(V)) p59: isNePal#(V) -> isPalListKind#(activate(V)) p60: isNePal#(V) -> activate#(V) p61: isNePal#(n____(I,__(P,I))) -> and#(and(isQid(activate(I)),n__isPalListKind(activate(I))),n__and(isPal(activate(P)),n__isPalListKind(activate(P)))) p62: isNePal#(n____(I,__(P,I))) -> and#(isQid(activate(I)),n__isPalListKind(activate(I))) p63: isNePal#(n____(I,__(P,I))) -> isQid#(activate(I)) p64: isNePal#(n____(I,__(P,I))) -> activate#(I) p65: isNePal#(n____(I,__(P,I))) -> isPal#(activate(P)) p66: isNePal#(n____(I,__(P,I))) -> activate#(P) p67: isPal#(V) -> U71#(isPalListKind(activate(V)),activate(V)) p68: isPal#(V) -> isPalListKind#(activate(V)) p69: isPal#(V) -> activate#(V) p70: isPalListKind#(n____(V1,V2)) -> and#(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) p71: isPalListKind#(n____(V1,V2)) -> isPalListKind#(activate(V1)) p72: isPalListKind#(n____(V1,V2)) -> activate#(V1) p73: isPalListKind#(n____(V1,V2)) -> activate#(V2) p74: activate#(n__nil()) -> nil#() p75: activate#(n____(X1,X2)) -> __#(X1,X2) p76: activate#(n__isPalListKind(X)) -> isPalListKind#(X) p77: activate#(n__and(X1,X2)) -> and#(X1,X2) p78: activate#(n__a()) -> a#() p79: activate#(n__e()) -> e#() p80: activate#(n__i()) -> i#() p81: activate#(n__o()) -> o#() p82: activate#(n__u()) -> u#() and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt(),V) -> U12(isNeList(activate(V))) r5: U12(tt()) -> tt() r6: U21(tt(),V1,V2) -> U22(isList(activate(V1)),activate(V2)) r7: U22(tt(),V2) -> U23(isList(activate(V2))) r8: U23(tt()) -> tt() r9: U31(tt(),V) -> U32(isQid(activate(V))) r10: U32(tt()) -> tt() r11: U41(tt(),V1,V2) -> U42(isList(activate(V1)),activate(V2)) r12: U42(tt(),V2) -> U43(isNeList(activate(V2))) r13: U43(tt()) -> tt() r14: U51(tt(),V1,V2) -> U52(isNeList(activate(V1)),activate(V2)) r15: U52(tt(),V2) -> U53(isList(activate(V2))) r16: U53(tt()) -> tt() r17: U61(tt(),V) -> U62(isQid(activate(V))) r18: U62(tt()) -> tt() r19: U71(tt(),V) -> U72(isNePal(activate(V))) r20: U72(tt()) -> tt() r21: and(tt(),X) -> activate(X) r22: isList(V) -> U11(isPalListKind(activate(V)),activate(V)) r23: isList(n__nil()) -> tt() r24: isList(n____(V1,V2)) -> U21(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r25: isNeList(V) -> U31(isPalListKind(activate(V)),activate(V)) r26: isNeList(n____(V1,V2)) -> U41(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r27: isNeList(n____(V1,V2)) -> U51(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r28: isNePal(V) -> U61(isPalListKind(activate(V)),activate(V)) r29: isNePal(n____(I,__(P,I))) -> and(and(isQid(activate(I)),n__isPalListKind(activate(I))),n__and(isPal(activate(P)),n__isPalListKind(activate(P)))) r30: isPal(V) -> U71(isPalListKind(activate(V)),activate(V)) r31: isPal(n__nil()) -> tt() r32: isPalListKind(n__a()) -> tt() r33: isPalListKind(n__e()) -> tt() r34: isPalListKind(n__i()) -> tt() r35: isPalListKind(n__nil()) -> tt() r36: isPalListKind(n__o()) -> tt() r37: isPalListKind(n__u()) -> tt() r38: isPalListKind(n____(V1,V2)) -> and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) r39: isQid(n__a()) -> tt() r40: isQid(n__e()) -> tt() r41: isQid(n__i()) -> tt() r42: isQid(n__o()) -> tt() r43: isQid(n__u()) -> tt() r44: nil() -> n__nil() r45: __(X1,X2) -> n____(X1,X2) r46: isPalListKind(X) -> n__isPalListKind(X) r47: and(X1,X2) -> n__and(X1,X2) r48: a() -> n__a() r49: e() -> n__e() r50: i() -> n__i() r51: o() -> n__o() r52: u() -> n__u() r53: activate(n__nil()) -> nil() r54: activate(n____(X1,X2)) -> __(X1,X2) r55: activate(n__isPalListKind(X)) -> isPalListKind(X) r56: activate(n__and(X1,X2)) -> and(X1,X2) r57: activate(n__a()) -> a() r58: activate(n__e()) -> e() r59: activate(n__i()) -> i() r60: activate(n__o()) -> o() r61: activate(n__u()) -> u() r62: activate(X) -> X The estimated dependency graph contains the following SCCs: {p34, p65, p67} {p4, p6, p7, p11, p16, p17, p21, p23, p24, p28, p37, p40, p48, p53} {p36, p70, p71, p72, p73, p76, p77} {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNePal#(n____(I,__(P,I))) -> isPal#(activate(P)) p2: isPal#(V) -> U71#(isPalListKind(activate(V)),activate(V)) p3: U71#(tt(),V) -> isNePal#(activate(V)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt(),V) -> U12(isNeList(activate(V))) r5: U12(tt()) -> tt() r6: U21(tt(),V1,V2) -> U22(isList(activate(V1)),activate(V2)) r7: U22(tt(),V2) -> U23(isList(activate(V2))) r8: U23(tt()) -> tt() r9: U31(tt(),V) -> U32(isQid(activate(V))) r10: U32(tt()) -> tt() r11: U41(tt(),V1,V2) -> U42(isList(activate(V1)),activate(V2)) r12: U42(tt(),V2) -> U43(isNeList(activate(V2))) r13: U43(tt()) -> tt() r14: U51(tt(),V1,V2) -> U52(isNeList(activate(V1)),activate(V2)) r15: U52(tt(),V2) -> U53(isList(activate(V2))) r16: U53(tt()) -> tt() r17: U61(tt(),V) -> U62(isQid(activate(V))) r18: U62(tt()) -> tt() r19: U71(tt(),V) -> U72(isNePal(activate(V))) r20: U72(tt()) -> tt() r21: and(tt(),X) -> activate(X) r22: isList(V) -> U11(isPalListKind(activate(V)),activate(V)) r23: isList(n__nil()) -> tt() r24: isList(n____(V1,V2)) -> U21(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r25: isNeList(V) -> U31(isPalListKind(activate(V)),activate(V)) r26: isNeList(n____(V1,V2)) -> U41(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r27: isNeList(n____(V1,V2)) -> U51(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r28: isNePal(V) -> U61(isPalListKind(activate(V)),activate(V)) r29: isNePal(n____(I,__(P,I))) -> and(and(isQid(activate(I)),n__isPalListKind(activate(I))),n__and(isPal(activate(P)),n__isPalListKind(activate(P)))) r30: isPal(V) -> U71(isPalListKind(activate(V)),activate(V)) r31: isPal(n__nil()) -> tt() r32: isPalListKind(n__a()) -> tt() r33: isPalListKind(n__e()) -> tt() r34: isPalListKind(n__i()) -> tt() r35: isPalListKind(n__nil()) -> tt() r36: isPalListKind(n__o()) -> tt() r37: isPalListKind(n__u()) -> tt() r38: isPalListKind(n____(V1,V2)) -> and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) r39: isQid(n__a()) -> tt() r40: isQid(n__e()) -> tt() r41: isQid(n__i()) -> tt() r42: isQid(n__o()) -> tt() r43: isQid(n__u()) -> tt() r44: nil() -> n__nil() r45: __(X1,X2) -> n____(X1,X2) r46: isPalListKind(X) -> n__isPalListKind(X) r47: and(X1,X2) -> n__and(X1,X2) r48: a() -> n__a() r49: e() -> n__e() r50: i() -> n__i() r51: o() -> n__o() r52: u() -> n__u() r53: activate(n__nil()) -> nil() r54: activate(n____(X1,X2)) -> __(X1,X2) r55: activate(n__isPalListKind(X)) -> isPalListKind(X) r56: activate(n__and(X1,X2)) -> and(X1,X2) r57: activate(n__a()) -> a() r58: activate(n__e()) -> e() r59: activate(n__i()) -> i() r60: activate(n__o()) -> o() r61: activate(n__u()) -> u() r62: activate(X) -> X The set of usable rules consists of r1, r2, r3, r21, r32, r33, r34, r35, r36, r37, r38, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^3 order: lexicographic order interpretations: isNePal#_A(x1) = x1 + (0,1,5) n_____A(x1,x2) = ((1,0,0),(0,1,0),(1,1,1)) x1 + ((1,0,0),(0,0,0),(1,0,0)) x2 + (9,0,0) ___A(x1,x2) = x1 + x2 + (10,11,11) isPal#_A(x1) = ((1,0,0),(1,0,0),(0,1,0)) x1 + (6,1,3) activate_A(x1) = ((1,0,0),(1,1,0),(1,0,1)) x1 + (2,1,1) U71#_A(x1,x2) = ((1,0,0),(0,0,0),(1,0,0)) x2 + (3,0,0) isPalListKind_A(x1) = x1 + (4,4,8) tt_A() = (1,1,10) nil_A() = (2,2,4) and_A(x1,x2) = x1 + ((1,0,0),(0,1,0),(1,0,0)) x2 + (2,2,2) n__nil_A() = (1,1,1) n__and_A(x1,x2) = x1 + x2 + (1,1,1) a_A() = (2,2,0) n__a_A() = (1,1,3) e_A() = (2,2,6) n__e_A() = (1,1,3) i_A() = (2,4,4) n__i_A() = (1,1,1) o_A() = (2,2,2) n__o_A() = (1,1,1) u_A() = (2,4,6) n__u_A() = (1,1,3) n__isPalListKind_A(x1) = ((1,0,0),(0,0,0),(1,0,0)) x1 + (3,1,9) 2. lexicographic path order with precedence: precedence: __ > n__u > n__o > e > u > n__and > n__a > n____ > n__isPalListKind > n__e > activate > nil > n__nil > i > a > isPal# > isPalListKind > and > isNePal# > n__i > tt > o > U71# argument filter: pi(isNePal#) = [] pi(n____) = [] pi(__) = [] pi(isPal#) = [] pi(activate) = [] pi(U71#) = [] pi(isPalListKind) = [] pi(tt) = [] pi(nil) = [] pi(and) = [] pi(n__nil) = [] pi(n__and) = [] pi(a) = [] pi(n__a) = [] pi(e) = [] pi(n__e) = [] pi(i) = [] pi(n__i) = [] pi(o) = [] pi(n__o) = [] pi(u) = [] pi(n__u) = [] pi(n__isPalListKind) = [] The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U52#(tt(),V2) -> isList#(activate(V2)) p2: isList#(n____(V1,V2)) -> U21#(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) p3: U21#(tt(),V1,V2) -> isList#(activate(V1)) p4: isList#(V) -> U11#(isPalListKind(activate(V)),activate(V)) p5: U11#(tt(),V) -> isNeList#(activate(V)) p6: isNeList#(n____(V1,V2)) -> U51#(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) p7: U51#(tt(),V1,V2) -> isNeList#(activate(V1)) p8: isNeList#(n____(V1,V2)) -> U41#(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) p9: U41#(tt(),V1,V2) -> isList#(activate(V1)) p10: U41#(tt(),V1,V2) -> U42#(isList(activate(V1)),activate(V2)) p11: U42#(tt(),V2) -> isNeList#(activate(V2)) p12: U51#(tt(),V1,V2) -> U52#(isNeList(activate(V1)),activate(V2)) p13: U21#(tt(),V1,V2) -> U22#(isList(activate(V1)),activate(V2)) p14: U22#(tt(),V2) -> isList#(activate(V2)) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt(),V) -> U12(isNeList(activate(V))) r5: U12(tt()) -> tt() r6: U21(tt(),V1,V2) -> U22(isList(activate(V1)),activate(V2)) r7: U22(tt(),V2) -> U23(isList(activate(V2))) r8: U23(tt()) -> tt() r9: U31(tt(),V) -> U32(isQid(activate(V))) r10: U32(tt()) -> tt() r11: U41(tt(),V1,V2) -> U42(isList(activate(V1)),activate(V2)) r12: U42(tt(),V2) -> U43(isNeList(activate(V2))) r13: U43(tt()) -> tt() r14: U51(tt(),V1,V2) -> U52(isNeList(activate(V1)),activate(V2)) r15: U52(tt(),V2) -> U53(isList(activate(V2))) r16: U53(tt()) -> tt() r17: U61(tt(),V) -> U62(isQid(activate(V))) r18: U62(tt()) -> tt() r19: U71(tt(),V) -> U72(isNePal(activate(V))) r20: U72(tt()) -> tt() r21: and(tt(),X) -> activate(X) r22: isList(V) -> U11(isPalListKind(activate(V)),activate(V)) r23: isList(n__nil()) -> tt() r24: isList(n____(V1,V2)) -> U21(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r25: isNeList(V) -> U31(isPalListKind(activate(V)),activate(V)) r26: isNeList(n____(V1,V2)) -> U41(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r27: isNeList(n____(V1,V2)) -> U51(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r28: isNePal(V) -> U61(isPalListKind(activate(V)),activate(V)) r29: isNePal(n____(I,__(P,I))) -> and(and(isQid(activate(I)),n__isPalListKind(activate(I))),n__and(isPal(activate(P)),n__isPalListKind(activate(P)))) r30: isPal(V) -> U71(isPalListKind(activate(V)),activate(V)) r31: isPal(n__nil()) -> tt() r32: isPalListKind(n__a()) -> tt() r33: isPalListKind(n__e()) -> tt() r34: isPalListKind(n__i()) -> tt() r35: isPalListKind(n__nil()) -> tt() r36: isPalListKind(n__o()) -> tt() r37: isPalListKind(n__u()) -> tt() r38: isPalListKind(n____(V1,V2)) -> and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) r39: isQid(n__a()) -> tt() r40: isQid(n__e()) -> tt() r41: isQid(n__i()) -> tt() r42: isQid(n__o()) -> tt() r43: isQid(n__u()) -> tt() r44: nil() -> n__nil() r45: __(X1,X2) -> n____(X1,X2) r46: isPalListKind(X) -> n__isPalListKind(X) r47: and(X1,X2) -> n__and(X1,X2) r48: a() -> n__a() r49: e() -> n__e() r50: i() -> n__i() r51: o() -> n__o() r52: u() -> n__u() r53: activate(n__nil()) -> nil() r54: activate(n____(X1,X2)) -> __(X1,X2) r55: activate(n__isPalListKind(X)) -> isPalListKind(X) r56: activate(n__and(X1,X2)) -> and(X1,X2) r57: activate(n__a()) -> a() r58: activate(n__e()) -> e() r59: activate(n__i()) -> i() r60: activate(n__o()) -> o() r61: activate(n__u()) -> u() r62: activate(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r21, r22, r23, r24, r25, r26, r27, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^3 order: lexicographic order interpretations: U52#_A(x1,x2) = ((1,0,0),(1,1,0),(0,1,1)) x1 + ((1,0,0),(1,0,0),(1,1,0)) x2 + (6,0,0) tt_A() = (12,21,28) isList#_A(x1) = x1 + (15,25,50) activate_A(x1) = x1 + (2,2,3) n_____A(x1,x2) = ((1,0,0),(0,1,0),(1,0,0)) x1 + ((1,0,0),(0,0,0),(1,0,0)) x2 + (21,0,21) U21#_A(x1,x2,x3) = ((0,0,0),(0,0,0),(1,0,0)) x1 + ((1,0,0),(1,0,0),(1,1,0)) x2 + ((1,0,0),(1,0,0),(1,1,0)) x3 + (31,26,39) and_A(x1,x2) = ((1,0,0),(0,1,0),(0,1,0)) x2 + (3,4,4) isPalListKind_A(x1) = ((1,0,0),(1,0,0),(0,0,0)) x1 + (2,9,4) n__isPalListKind_A(x1) = ((1,0,0),(1,0,0),(0,0,0)) x1 + (1,8,1) U11#_A(x1,x2) = ((1,0,0),(1,0,0),(0,0,0)) x2 + (12,23,14) isNeList#_A(x1) = x1 + (9,22,13) U51#_A(x1,x2,x3) = ((1,0,0),(1,0,0),(1,0,0)) x2 + ((1,0,0),(1,0,0),(1,1,0)) x3 + (25,25,12) U41#_A(x1,x2,x3) = ((0,0,0),(1,0,0),(1,0,0)) x1 + ((1,0,0),(1,0,0),(1,1,0)) x2 + ((1,0,0),(0,0,0),(1,1,0)) x3 + (25,13,38) U42#_A(x1,x2) = ((1,0,0),(0,1,0),(1,0,1)) x1 + x2 + (0,0,19) isList_A(x1) = ((1,0,0),(1,0,0),(0,0,0)) x1 + (20,0,9) isNeList_A(x1) = ((0,0,0),(1,0,0),(0,0,0)) x1 + (16,4,1) U22#_A(x1,x2) = x1 + x2 + (6,5,0) U23_A(x1) = ((0,0,0),(0,0,0),(1,0,0)) x1 + (13,20,15) U43_A(x1) = (13,22,29) U53_A(x1) = ((0,0,0),(0,0,0),(1,0,0)) x1 + (13,22,0) U12_A(x1) = (13,0,0) U22_A(x1,x2) = ((0,0,0),(1,0,0),(0,1,0)) x1 + (14,7,15) U32_A(x1) = (13,22,13) U42_A(x1,x2) = ((0,0,0),(0,0,0),(1,0,0)) x1 + (14,23,0) U52_A(x1,x2) = (14,23,23) isQid_A(x1) = ((0,0,0),(1,0,0),(1,0,0)) x1 + (13,7,14) n__a_A() = (13,0,1) n__e_A() = (13,1,0) n__i_A() = (15,1,1) n__o_A() = (11,1,5) n__u_A() = (11,1,5) ___A(x1,x2) = ((1,0,0),(0,1,0),(0,1,1)) x1 + ((1,0,0),(0,0,0),(1,0,0)) x2 + (22,3,20) nil_A() = (12,1,2) U11_A(x1,x2) = ((1,0,0),(1,1,0),(1,0,1)) x1 + (2,0,0) U21_A(x1,x2,x3) = ((1,0,0),(1,0,0),(1,0,0)) x1 + (3,16,4) U31_A(x1,x2) = ((0,0,0),(1,0,0),(1,0,0)) x1 + (14,11,0) U41_A(x1,x2,x3) = ((0,0,0),(1,0,0),(1,0,0)) x1 + (15,20,0) U51_A(x1,x2,x3) = (15,24,24) n__nil_A() = (11,1,1) a_A() = (14,3,4) e_A() = (14,0,1) i_A() = (16,1,0) o_A() = (12,0,4) u_A() = (12,4,4) n__and_A(x1,x2) = x2 + (2,1,1) 2. lexicographic path order with precedence: precedence: U41# > U21# > U31 > U22# > U52# > n__i > isPalListKind > tt > isList# > and > activate > n__a > U42 > n__e > n__o > U51 > U41 > U51# > o > a > n__u > i > e > U21 > nil > isQid > U11 > u > n__and > U23 > n__nil > isList > n__isPalListKind > n____ > __ > U22 > U53 > isNeList# > U43 > U32 > U12 > U42# > U11# > isNeList > U52 argument filter: pi(U52#) = [1] pi(tt) = [] pi(isList#) = [] pi(activate) = [] pi(n____) = [] pi(U21#) = [] pi(and) = [] pi(isPalListKind) = [] pi(n__isPalListKind) = [] pi(U11#) = [] pi(isNeList#) = [] pi(U51#) = [] pi(U41#) = [] pi(U42#) = 1 pi(isList) = [] pi(isNeList) = [] pi(U22#) = [1] pi(U23) = [] pi(U43) = [] pi(U53) = [] pi(U12) = [] pi(U22) = [] pi(U32) = [] pi(U42) = [] pi(U52) = [] pi(isQid) = [] pi(n__a) = [] pi(n__e) = [] pi(n__i) = [] pi(n__o) = [] pi(n__u) = [] pi(__) = [] pi(nil) = [] pi(U11) = [] pi(U21) = [] pi(U31) = [] pi(U41) = [] pi(U51) = [] pi(n__nil) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] pi(n__and) = [] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPalListKind#(n____(V1,V2)) -> activate#(V2) p2: activate#(n__and(X1,X2)) -> and#(X1,X2) p3: and#(tt(),X) -> activate#(X) p4: activate#(n__isPalListKind(X)) -> isPalListKind#(X) p5: isPalListKind#(n____(V1,V2)) -> activate#(V1) p6: isPalListKind#(n____(V1,V2)) -> isPalListKind#(activate(V1)) p7: isPalListKind#(n____(V1,V2)) -> and#(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt(),V) -> U12(isNeList(activate(V))) r5: U12(tt()) -> tt() r6: U21(tt(),V1,V2) -> U22(isList(activate(V1)),activate(V2)) r7: U22(tt(),V2) -> U23(isList(activate(V2))) r8: U23(tt()) -> tt() r9: U31(tt(),V) -> U32(isQid(activate(V))) r10: U32(tt()) -> tt() r11: U41(tt(),V1,V2) -> U42(isList(activate(V1)),activate(V2)) r12: U42(tt(),V2) -> U43(isNeList(activate(V2))) r13: U43(tt()) -> tt() r14: U51(tt(),V1,V2) -> U52(isNeList(activate(V1)),activate(V2)) r15: U52(tt(),V2) -> U53(isList(activate(V2))) r16: U53(tt()) -> tt() r17: U61(tt(),V) -> U62(isQid(activate(V))) r18: U62(tt()) -> tt() r19: U71(tt(),V) -> U72(isNePal(activate(V))) r20: U72(tt()) -> tt() r21: and(tt(),X) -> activate(X) r22: isList(V) -> U11(isPalListKind(activate(V)),activate(V)) r23: isList(n__nil()) -> tt() r24: isList(n____(V1,V2)) -> U21(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r25: isNeList(V) -> U31(isPalListKind(activate(V)),activate(V)) r26: isNeList(n____(V1,V2)) -> U41(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r27: isNeList(n____(V1,V2)) -> U51(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r28: isNePal(V) -> U61(isPalListKind(activate(V)),activate(V)) r29: isNePal(n____(I,__(P,I))) -> and(and(isQid(activate(I)),n__isPalListKind(activate(I))),n__and(isPal(activate(P)),n__isPalListKind(activate(P)))) r30: isPal(V) -> U71(isPalListKind(activate(V)),activate(V)) r31: isPal(n__nil()) -> tt() r32: isPalListKind(n__a()) -> tt() r33: isPalListKind(n__e()) -> tt() r34: isPalListKind(n__i()) -> tt() r35: isPalListKind(n__nil()) -> tt() r36: isPalListKind(n__o()) -> tt() r37: isPalListKind(n__u()) -> tt() r38: isPalListKind(n____(V1,V2)) -> and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) r39: isQid(n__a()) -> tt() r40: isQid(n__e()) -> tt() r41: isQid(n__i()) -> tt() r42: isQid(n__o()) -> tt() r43: isQid(n__u()) -> tt() r44: nil() -> n__nil() r45: __(X1,X2) -> n____(X1,X2) r46: isPalListKind(X) -> n__isPalListKind(X) r47: and(X1,X2) -> n__and(X1,X2) r48: a() -> n__a() r49: e() -> n__e() r50: i() -> n__i() r51: o() -> n__o() r52: u() -> n__u() r53: activate(n__nil()) -> nil() r54: activate(n____(X1,X2)) -> __(X1,X2) r55: activate(n__isPalListKind(X)) -> isPalListKind(X) r56: activate(n__and(X1,X2)) -> and(X1,X2) r57: activate(n__a()) -> a() r58: activate(n__e()) -> e() r59: activate(n__i()) -> i() r60: activate(n__o()) -> o() r61: activate(n__u()) -> u() r62: activate(X) -> X The set of usable rules consists of r1, r2, r3, r21, r32, r33, r34, r35, r36, r37, r38, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^3 order: lexicographic order interpretations: isPalListKind#_A(x1) = ((0,0,0),(0,0,0),(1,0,0)) x1 n_____A(x1,x2) = ((1,0,0),(1,1,0),(0,0,0)) x1 + ((1,0,0),(1,1,0),(0,0,1)) x2 + (5,1,1) activate#_A(x1) = ((0,0,0),(0,0,0),(1,0,0)) x1 n__and_A(x1,x2) = ((0,0,0),(1,0,0),(0,0,0)) x1 + ((1,0,0),(1,1,0),(0,0,0)) x2 + (2,1,1) and#_A(x1,x2) = ((0,0,0),(0,0,0),(1,0,0)) x2 + (0,0,1) tt_A() = (1,6,12) n__isPalListKind_A(x1) = ((1,0,0),(1,1,0),(1,0,0)) x1 + (1,1,1) activate_A(x1) = ((1,0,0),(0,0,0),(0,1,0)) x1 + (2,3,3) isPalListKind_A(x1) = ((1,0,0),(1,0,0),(1,1,0)) x1 + (2,4,5) ___A(x1,x2) = x1 + x2 + (6,4,5) nil_A() = (2,4,0) and_A(x1,x2) = x2 + (3,2,2) n__nil_A() = (1,1,1) a_A() = (2,3,7) n__a_A() = (1,4,8) e_A() = (2,4,9) n__e_A() = (1,5,10) i_A() = (2,0,0) n__i_A() = (1,1,1) o_A() = (2,0,5) n__o_A() = (1,1,6) u_A() = (2,0,0) n__u_A() = (1,1,1) 2. lexicographic path order with precedence: precedence: n__u > n__nil > activate# > activate > isPalListKind > n__o > n____ > e > tt > and > nil > n__a > n__e > o > n__and > isPalListKind# > and# > n__isPalListKind > u > n__i > __ > i > a argument filter: pi(isPalListKind#) = [] pi(n____) = [2] pi(activate#) = [] pi(n__and) = [] pi(and#) = [] pi(tt) = [] pi(n__isPalListKind) = [] pi(activate) = [] pi(isPalListKind) = [] pi(__) = [1] pi(nil) = [] pi(and) = [] pi(n__nil) = [] pi(a) = [] pi(n__a) = [] pi(e) = [] pi(n__e) = [] pi(i) = [] pi(n__i) = [] pi(o) = [] pi(n__o) = [] pi(u) = [] pi(n__u) = [] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: __#(__(X,Y),Z) -> __#(X,__(Y,Z)) p2: __#(__(X,Y),Z) -> __#(Y,Z) and R consists of: r1: __(__(X,Y),Z) -> __(X,__(Y,Z)) r2: __(X,nil()) -> X r3: __(nil(),X) -> X r4: U11(tt(),V) -> U12(isNeList(activate(V))) r5: U12(tt()) -> tt() r6: U21(tt(),V1,V2) -> U22(isList(activate(V1)),activate(V2)) r7: U22(tt(),V2) -> U23(isList(activate(V2))) r8: U23(tt()) -> tt() r9: U31(tt(),V) -> U32(isQid(activate(V))) r10: U32(tt()) -> tt() r11: U41(tt(),V1,V2) -> U42(isList(activate(V1)),activate(V2)) r12: U42(tt(),V2) -> U43(isNeList(activate(V2))) r13: U43(tt()) -> tt() r14: U51(tt(),V1,V2) -> U52(isNeList(activate(V1)),activate(V2)) r15: U52(tt(),V2) -> U53(isList(activate(V2))) r16: U53(tt()) -> tt() r17: U61(tt(),V) -> U62(isQid(activate(V))) r18: U62(tt()) -> tt() r19: U71(tt(),V) -> U72(isNePal(activate(V))) r20: U72(tt()) -> tt() r21: and(tt(),X) -> activate(X) r22: isList(V) -> U11(isPalListKind(activate(V)),activate(V)) r23: isList(n__nil()) -> tt() r24: isList(n____(V1,V2)) -> U21(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r25: isNeList(V) -> U31(isPalListKind(activate(V)),activate(V)) r26: isNeList(n____(V1,V2)) -> U41(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r27: isNeList(n____(V1,V2)) -> U51(and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))),activate(V1),activate(V2)) r28: isNePal(V) -> U61(isPalListKind(activate(V)),activate(V)) r29: isNePal(n____(I,__(P,I))) -> and(and(isQid(activate(I)),n__isPalListKind(activate(I))),n__and(isPal(activate(P)),n__isPalListKind(activate(P)))) r30: isPal(V) -> U71(isPalListKind(activate(V)),activate(V)) r31: isPal(n__nil()) -> tt() r32: isPalListKind(n__a()) -> tt() r33: isPalListKind(n__e()) -> tt() r34: isPalListKind(n__i()) -> tt() r35: isPalListKind(n__nil()) -> tt() r36: isPalListKind(n__o()) -> tt() r37: isPalListKind(n__u()) -> tt() r38: isPalListKind(n____(V1,V2)) -> and(isPalListKind(activate(V1)),n__isPalListKind(activate(V2))) r39: isQid(n__a()) -> tt() r40: isQid(n__e()) -> tt() r41: isQid(n__i()) -> tt() r42: isQid(n__o()) -> tt() r43: isQid(n__u()) -> tt() r44: nil() -> n__nil() r45: __(X1,X2) -> n____(X1,X2) r46: isPalListKind(X) -> n__isPalListKind(X) r47: and(X1,X2) -> n__and(X1,X2) r48: a() -> n__a() r49: e() -> n__e() r50: i() -> n__i() r51: o() -> n__o() r52: u() -> n__u() r53: activate(n__nil()) -> nil() r54: activate(n____(X1,X2)) -> __(X1,X2) r55: activate(n__isPalListKind(X)) -> isPalListKind(X) r56: activate(n__and(X1,X2)) -> and(X1,X2) r57: activate(n__a()) -> a() r58: activate(n__e()) -> e() r59: activate(n__i()) -> i() r60: activate(n__o()) -> o() r61: activate(n__u()) -> u() r62: activate(X) -> X The set of usable rules consists of r1, r2, r3, r45 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^3 order: lexicographic order interpretations: __#_A(x1,x2) = ((1,0,0),(1,0,0),(1,0,0)) x1 ___A(x1,x2) = x1 + x2 + (1,1,1) nil_A() = (1,1,1) n_____A(x1,x2) = (0,2,2) 2. lexicographic path order with precedence: precedence: n____ > __# > __ > nil argument filter: pi(__#) = [] pi(__) = [] pi(nil) = [] pi(n____) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.