(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt) → tt
a__U21(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U52(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIList(V2))
a__U62(tt) → tt
a__U71(tt, L, N) → a__U72(a__isNat(N), L)
a__U72(tt, L) → s(a__length(mark(L)))
a__U81(tt) → nil
a__U91(tt, IL, M, N) → a__U92(a__isNat(M), IL, M, N)
a__U92(tt, IL, M, N) → a__U93(a__isNat(N), IL, M, N)
a__U93(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__isNatList(take(V1, V2)) → a__U61(a__isNat(V1), V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U71(a__isNatList(L), L, N)
a__take(0, IL) → a__U81(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U91(a__isNatIList(IL), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3, X4)) → a__U91(mark(X1), X2, X3, X4)
mark(U92(X1, X2, X3, X4)) → a__U92(mark(X1), X2, X3, X4)
mark(U93(X1, X2, X3, X4)) → a__U93(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X) → U11(X)
a__U21(X) → U21(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__isNatList(X) → isNatList(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2) → U72(X1, X2)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__U81(X) → U81(X)
a__U91(X1, X2, X3, X4) → U91(X1, X2, X3, X4)
a__U92(X1, X2, X3, X4) → U92(X1, X2, X3, X4)
a__U93(X1, X2, X3, X4) → U93(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__U41(tt, V2) → A__U42(a__isNatIList(V2))
A__U41(tt, V2) → A__ISNATILIST(V2)
A__U51(tt, V2) → A__U52(a__isNatList(V2))
A__U51(tt, V2) → A__ISNATLIST(V2)
A__U61(tt, V2) → A__U62(a__isNatIList(V2))
A__U61(tt, V2) → A__ISNATILIST(V2)
A__U71(tt, L, N) → A__U72(a__isNat(N), L)
A__U71(tt, L, N) → A__ISNAT(N)
A__U72(tt, L) → A__LENGTH(mark(L))
A__U72(tt, L) → MARK(L)
A__U91(tt, IL, M, N) → A__U92(a__isNat(M), IL, M, N)
A__U91(tt, IL, M, N) → A__ISNAT(M)
A__U92(tt, IL, M, N) → A__U93(a__isNat(N), IL, M, N)
A__U92(tt, IL, M, N) → A__ISNAT(N)
A__U93(tt, IL, M, N) → MARK(N)
A__ISNAT(length(V1)) → A__U11(a__isNatList(V1))
A__ISNAT(length(V1)) → A__ISNATLIST(V1)
A__ISNAT(s(V1)) → A__U21(a__isNat(V1))
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__ISNATILIST(V) → A__U31(a__isNatList(V))
A__ISNATILIST(V) → A__ISNATLIST(V)
A__ISNATILIST(cons(V1, V2)) → A__U41(a__isNat(V1), V2)
A__ISNATILIST(cons(V1, V2)) → A__ISNAT(V1)
A__ISNATLIST(cons(V1, V2)) → A__U51(a__isNat(V1), V2)
A__ISNATLIST(cons(V1, V2)) → A__ISNAT(V1)
A__ISNATLIST(take(V1, V2)) → A__U61(a__isNat(V1), V2)
A__ISNATLIST(take(V1, V2)) → A__ISNAT(V1)
A__LENGTH(cons(N, L)) → A__U71(a__isNatList(L), L, N)
A__LENGTH(cons(N, L)) → A__ISNATLIST(L)
A__TAKE(0, IL) → A__U81(a__isNatIList(IL))
A__TAKE(0, IL) → A__ISNATILIST(IL)
A__TAKE(s(M), cons(N, IL)) → A__U91(a__isNatIList(IL), IL, M, N)
A__TAKE(s(M), cons(N, IL)) → A__ISNATILIST(IL)
MARK(zeros) → A__ZEROS
MARK(U11(X)) → A__U11(mark(X))
MARK(U11(X)) → MARK(X)
MARK(U21(X)) → A__U21(mark(X))
MARK(U21(X)) → MARK(X)
MARK(U31(X)) → A__U31(mark(X))
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → A__U41(mark(X1), X2)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → A__U42(mark(X))
MARK(U42(X)) → MARK(X)
MARK(isNatIList(X)) → A__ISNATILIST(X)
MARK(U51(X1, X2)) → A__U51(mark(X1), X2)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → A__U52(mark(X))
MARK(U52(X)) → MARK(X)
MARK(isNatList(X)) → A__ISNATLIST(X)
MARK(U61(X1, X2)) → A__U61(mark(X1), X2)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → A__U62(mark(X))
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2, X3)) → A__U71(mark(X1), X2, X3)
MARK(U71(X1, X2, X3)) → MARK(X1)
MARK(U72(X1, X2)) → A__U72(mark(X1), X2)
MARK(U72(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
MARK(length(X)) → A__LENGTH(mark(X))
MARK(length(X)) → MARK(X)
MARK(U81(X)) → A__U81(mark(X))
MARK(U81(X)) → MARK(X)
MARK(U91(X1, X2, X3, X4)) → A__U91(mark(X1), X2, X3, X4)
MARK(U91(X1, X2, X3, X4)) → MARK(X1)
MARK(U92(X1, X2, X3, X4)) → A__U92(mark(X1), X2, X3, X4)
MARK(U92(X1, X2, X3, X4)) → MARK(X1)
MARK(U93(X1, X2, X3, X4)) → A__U93(mark(X1), X2, X3, X4)
MARK(U93(X1, X2, X3, X4)) → MARK(X1)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt) → tt
a__U21(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U52(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIList(V2))
a__U62(tt) → tt
a__U71(tt, L, N) → a__U72(a__isNat(N), L)
a__U72(tt, L) → s(a__length(mark(L)))
a__U81(tt) → nil
a__U91(tt, IL, M, N) → a__U92(a__isNat(M), IL, M, N)
a__U92(tt, IL, M, N) → a__U93(a__isNat(N), IL, M, N)
a__U93(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__isNatList(take(V1, V2)) → a__U61(a__isNat(V1), V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U71(a__isNatList(L), L, N)
a__take(0, IL) → a__U81(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U91(a__isNatIList(IL), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3, X4)) → a__U91(mark(X1), X2, X3, X4)
mark(U92(X1, X2, X3, X4)) → a__U92(mark(X1), X2, X3, X4)
mark(U93(X1, X2, X3, X4)) → a__U93(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X) → U11(X)
a__U21(X) → U21(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__isNatList(X) → isNatList(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2) → U72(X1, X2)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__U81(X) → U81(X)
a__U91(X1, X2, X3, X4) → U91(X1, X2, X3, X4)
a__U92(X1, X2, X3, X4) → U92(X1, X2, X3, X4)
a__U93(X1, X2, X3, X4) → U93(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 27 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__U41(tt, V2) → A__ISNATILIST(V2)
A__ISNATILIST(V) → A__ISNATLIST(V)
A__ISNATLIST(cons(V1, V2)) → A__U51(a__isNat(V1), V2)
A__U51(tt, V2) → A__ISNATLIST(V2)
A__ISNATLIST(cons(V1, V2)) → A__ISNAT(V1)
A__ISNAT(length(V1)) → A__ISNATLIST(V1)
A__ISNATLIST(take(V1, V2)) → A__U61(a__isNat(V1), V2)
A__U61(tt, V2) → A__ISNATILIST(V2)
A__ISNATILIST(cons(V1, V2)) → A__U41(a__isNat(V1), V2)
A__ISNATILIST(cons(V1, V2)) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__ISNATLIST(take(V1, V2)) → A__ISNAT(V1)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt) → tt
a__U21(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U52(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIList(V2))
a__U62(tt) → tt
a__U71(tt, L, N) → a__U72(a__isNat(N), L)
a__U72(tt, L) → s(a__length(mark(L)))
a__U81(tt) → nil
a__U91(tt, IL, M, N) → a__U92(a__isNat(M), IL, M, N)
a__U92(tt, IL, M, N) → a__U93(a__isNat(N), IL, M, N)
a__U93(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__isNatList(take(V1, V2)) → a__U61(a__isNat(V1), V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U71(a__isNatList(L), L, N)
a__take(0, IL) → a__U81(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U91(a__isNatIList(IL), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3, X4)) → a__U91(mark(X1), X2, X3, X4)
mark(U92(X1, X2, X3, X4)) → a__U92(mark(X1), X2, X3, X4)
mark(U93(X1, X2, X3, X4)) → a__U93(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X) → U11(X)
a__U21(X) → U21(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__isNatList(X) → isNatList(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2) → U72(X1, X2)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__U81(X) → U81(X)
a__U91(X1, X2, X3, X4) → U91(X1, X2, X3, X4)
a__U92(X1, X2, X3, X4) → U92(X1, X2, X3, X4)
a__U93(X1, X2, X3, X4) → U93(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__U41(tt, V2) → A__ISNATILIST(V2)
A__ISNATILIST(V) → A__ISNATLIST(V)
A__ISNATLIST(cons(V1, V2)) → A__U51(a__isNat(V1), V2)
A__U51(tt, V2) → A__ISNATLIST(V2)
A__ISNATLIST(cons(V1, V2)) → A__ISNAT(V1)
A__ISNAT(length(V1)) → A__ISNATLIST(V1)
A__ISNATLIST(take(V1, V2)) → A__U61(a__isNat(V1), V2)
A__U61(tt, V2) → A__ISNATILIST(V2)
A__ISNATILIST(cons(V1, V2)) → A__U41(a__isNat(V1), V2)
A__ISNATILIST(cons(V1, V2)) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__ISNATLIST(take(V1, V2)) → A__ISNAT(V1)
The TRS R consists of the following rules:
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNat(X) → isNat(X)
a__U21(tt) → tt
a__U21(X) → U21(X)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__isNatList(take(V1, V2)) → a__U61(a__isNat(V1), V2)
a__isNatList(X) → isNatList(X)
a__U11(tt) → tt
a__U11(X) → U11(X)
a__U61(tt, V2) → a__U62(a__isNatIList(V2))
a__U61(X1, X2) → U61(X1, X2)
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatIList(X) → isNatIList(X)
a__U62(tt) → tt
a__U62(X) → U62(X)
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U41(X1, X2) → U41(X1, X2)
a__U42(tt) → tt
a__U42(X) → U42(X)
a__U31(tt) → tt
a__U31(X) → U31(X)
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U51(X1, X2) → U51(X1, X2)
a__U52(tt) → tt
a__U52(X) → U52(X)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- A__ISNATILIST(cons(V1, V2)) → A__U41(a__isNat(V1), V2)
The graph contains the following edges 1 > 2
- A__ISNATILIST(V) → A__ISNATLIST(V)
The graph contains the following edges 1 >= 1
- A__ISNATILIST(cons(V1, V2)) → A__ISNAT(V1)
The graph contains the following edges 1 > 1
- A__U51(tt, V2) → A__ISNATLIST(V2)
The graph contains the following edges 2 >= 1
- A__ISNAT(length(V1)) → A__ISNATLIST(V1)
The graph contains the following edges 1 > 1
- A__ISNAT(s(V1)) → A__ISNAT(V1)
The graph contains the following edges 1 > 1
- A__ISNATLIST(cons(V1, V2)) → A__U51(a__isNat(V1), V2)
The graph contains the following edges 1 > 2
- A__ISNATLIST(take(V1, V2)) → A__U61(a__isNat(V1), V2)
The graph contains the following edges 1 > 2
- A__U61(tt, V2) → A__ISNATILIST(V2)
The graph contains the following edges 2 >= 1
- A__U41(tt, V2) → A__ISNATILIST(V2)
The graph contains the following edges 2 >= 1
- A__ISNATLIST(cons(V1, V2)) → A__ISNAT(V1)
The graph contains the following edges 1 > 1
- A__ISNATLIST(take(V1, V2)) → A__ISNAT(V1)
The graph contains the following edges 1 > 1
(9) YES
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(X)) → MARK(X)
MARK(U21(X)) → MARK(X)
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2, X3)) → A__U71(mark(X1), X2, X3)
A__U71(tt, L, N) → A__U72(a__isNat(N), L)
A__U72(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__U71(a__isNatList(L), L, N)
A__U72(tt, L) → MARK(L)
MARK(U71(X1, X2, X3)) → MARK(X1)
MARK(U72(X1, X2)) → A__U72(mark(X1), X2)
MARK(U72(X1, X2)) → MARK(X1)
MARK(length(X)) → A__LENGTH(mark(X))
MARK(length(X)) → MARK(X)
MARK(U81(X)) → MARK(X)
MARK(U91(X1, X2, X3, X4)) → A__U91(mark(X1), X2, X3, X4)
A__U91(tt, IL, M, N) → A__U92(a__isNat(M), IL, M, N)
A__U92(tt, IL, M, N) → A__U93(a__isNat(N), IL, M, N)
A__U93(tt, IL, M, N) → MARK(N)
MARK(U91(X1, X2, X3, X4)) → MARK(X1)
MARK(U92(X1, X2, X3, X4)) → A__U92(mark(X1), X2, X3, X4)
MARK(U92(X1, X2, X3, X4)) → MARK(X1)
MARK(U93(X1, X2, X3, X4)) → A__U93(mark(X1), X2, X3, X4)
MARK(U93(X1, X2, X3, X4)) → MARK(X1)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__TAKE(s(M), cons(N, IL)) → A__U91(a__isNatIList(IL), IL, M, N)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt) → tt
a__U21(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U52(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIList(V2))
a__U62(tt) → tt
a__U71(tt, L, N) → a__U72(a__isNat(N), L)
a__U72(tt, L) → s(a__length(mark(L)))
a__U81(tt) → nil
a__U91(tt, IL, M, N) → a__U92(a__isNat(M), IL, M, N)
a__U92(tt, IL, M, N) → a__U93(a__isNat(N), IL, M, N)
a__U93(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__isNatList(take(V1, V2)) → a__U61(a__isNat(V1), V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U71(a__isNatList(L), L, N)
a__take(0, IL) → a__U81(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U91(a__isNatIList(IL), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3, X4)) → a__U91(mark(X1), X2, X3, X4)
mark(U92(X1, X2, X3, X4)) → a__U92(mark(X1), X2, X3, X4)
mark(U93(X1, X2, X3, X4)) → a__U93(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X) → U11(X)
a__U21(X) → U21(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__isNatList(X) → isNatList(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2) → U72(X1, X2)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__U81(X) → U81(X)
a__U91(X1, X2, X3, X4) → U91(X1, X2, X3, X4)
a__U92(X1, X2, X3, X4) → U92(X1, X2, X3, X4)
a__U93(X1, X2, X3, X4) → U93(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(length(X)) → A__LENGTH(mark(X))
MARK(length(X)) → MARK(X)
A__TAKE(s(M), cons(N, IL)) → A__U91(a__isNatIList(IL), IL, M, N)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__LENGTH(x1) ) = x1 |
POL( A__TAKE(x1, x2) ) = x2 + 2 |
POL( A__U71(x1, ..., x3) ) = x2 |
POL( A__U72(x1, x2) ) = max{0, x1 + x2 - 2} |
POL( A__U91(x1, ..., x4) ) = max{0, x1 + x4 - 2} |
POL( A__U92(x1, ..., x4) ) = x4 |
POL( A__U93(x1, ..., x4) ) = max{0, x1 + x4 - 2} |
POL( a__U41(x1, x2) ) = x1 |
POL( isNatIList(x1) ) = 2 |
POL( a__isNatIList(x1) ) = 2 |
POL( a__U51(x1, x2) ) = x1 |
POL( a__isNatList(x1) ) = 2 |
POL( a__U61(x1, x2) ) = x1 |
POL( U71(x1, ..., x3) ) = x1 + x2 + 2x3 |
POL( a__U71(x1, ..., x3) ) = x1 + x2 + 2x3 |
POL( U72(x1, x2) ) = x1 + x2 |
POL( a__U72(x1, x2) ) = x1 + x2 |
POL( length(x1) ) = x1 + 2 |
POL( a__length(x1) ) = x1 + 2 |
POL( U91(x1, ..., x4) ) = x1 + 2x2 + x3 + 2x4 |
POL( a__U91(x1, ..., x4) ) = x1 + 2x2 + x3 + 2x4 |
POL( U92(x1, ..., x4) ) = x1 + 2x2 + x3 + 2x4 |
POL( a__U92(x1, ..., x4) ) = x1 + 2x2 + x3 + 2x4 |
POL( U93(x1, ..., x4) ) = x1 + 2x2 + x3 + 2x4 |
POL( a__U93(x1, ..., x4) ) = x1 + 2x2 + x3 + 2x4 |
POL( take(x1, x2) ) = x1 + 2x2 + 2 |
POL( a__take(x1, x2) ) = x1 + 2x2 + 2 |
POL( cons(x1, x2) ) = 2x1 + x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3, X4)) → a__U91(mark(X1), X2, X3, X4)
mark(U92(X1, X2, X3, X4)) → a__U92(mark(X1), X2, X3, X4)
mark(U93(X1, X2, X3, X4)) → a__U93(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNat(X) → isNat(X)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__isNatList(take(V1, V2)) → a__U61(a__isNat(V1), V2)
a__isNatList(X) → isNatList(X)
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatIList(X) → isNatIList(X)
a__U11(tt) → tt
a__U11(X) → U11(X)
a__U21(tt) → tt
a__U21(X) → U21(X)
a__U31(tt) → tt
a__U31(X) → U31(X)
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U41(X1, X2) → U41(X1, X2)
a__U42(tt) → tt
a__U42(X) → U42(X)
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U51(X1, X2) → U51(X1, X2)
a__U52(tt) → tt
a__U52(X) → U52(X)
a__U61(tt, V2) → a__U62(a__isNatIList(V2))
a__U61(X1, X2) → U61(X1, X2)
a__U62(tt) → tt
a__U62(X) → U62(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2) → U72(X1, X2)
a__length(nil) → 0
a__length(X) → length(X)
a__U81(tt) → nil
a__U81(X) → U81(X)
a__U91(X1, X2, X3, X4) → U91(X1, X2, X3, X4)
a__U92(X1, X2, X3, X4) → U92(X1, X2, X3, X4)
a__U93(X1, X2, X3, X4) → U93(X1, X2, X3, X4)
a__take(0, IL) → a__U81(a__isNatIList(IL))
a__take(X1, X2) → take(X1, X2)
a__take(s(M), cons(N, IL)) → a__U91(a__isNatIList(IL), IL, M, N)
a__U91(tt, IL, M, N) → a__U92(a__isNat(M), IL, M, N)
a__U92(tt, IL, M, N) → a__U93(a__isNat(N), IL, M, N)
a__U93(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U71(a__isNatList(L), L, N)
a__U71(tt, L, N) → a__U72(a__isNat(N), L)
a__U72(tt, L) → s(a__length(mark(L)))
a__zeros → cons(0, zeros)
a__zeros → zeros
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(X)) → MARK(X)
MARK(U21(X)) → MARK(X)
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2, X3)) → A__U71(mark(X1), X2, X3)
A__U71(tt, L, N) → A__U72(a__isNat(N), L)
A__U72(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__U71(a__isNatList(L), L, N)
A__U72(tt, L) → MARK(L)
MARK(U71(X1, X2, X3)) → MARK(X1)
MARK(U72(X1, X2)) → A__U72(mark(X1), X2)
MARK(U72(X1, X2)) → MARK(X1)
MARK(U81(X)) → MARK(X)
MARK(U91(X1, X2, X3, X4)) → A__U91(mark(X1), X2, X3, X4)
A__U91(tt, IL, M, N) → A__U92(a__isNat(M), IL, M, N)
A__U92(tt, IL, M, N) → A__U93(a__isNat(N), IL, M, N)
A__U93(tt, IL, M, N) → MARK(N)
MARK(U91(X1, X2, X3, X4)) → MARK(X1)
MARK(U92(X1, X2, X3, X4)) → A__U92(mark(X1), X2, X3, X4)
MARK(U92(X1, X2, X3, X4)) → MARK(X1)
MARK(U93(X1, X2, X3, X4)) → A__U93(mark(X1), X2, X3, X4)
MARK(U93(X1, X2, X3, X4)) → MARK(X1)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt) → tt
a__U21(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U52(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIList(V2))
a__U62(tt) → tt
a__U71(tt, L, N) → a__U72(a__isNat(N), L)
a__U72(tt, L) → s(a__length(mark(L)))
a__U81(tt) → nil
a__U91(tt, IL, M, N) → a__U92(a__isNat(M), IL, M, N)
a__U92(tt, IL, M, N) → a__U93(a__isNat(N), IL, M, N)
a__U93(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__isNatList(take(V1, V2)) → a__U61(a__isNat(V1), V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U71(a__isNatList(L), L, N)
a__take(0, IL) → a__U81(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U91(a__isNatIList(IL), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3, X4)) → a__U91(mark(X1), X2, X3, X4)
mark(U92(X1, X2, X3, X4)) → a__U92(mark(X1), X2, X3, X4)
mark(U93(X1, X2, X3, X4)) → a__U93(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X) → U11(X)
a__U21(X) → U21(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__isNatList(X) → isNatList(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2) → U72(X1, X2)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__U81(X) → U81(X)
a__U91(X1, X2, X3, X4) → U91(X1, X2, X3, X4)
a__U92(X1, X2, X3, X4) → U92(X1, X2, X3, X4)
a__U93(X1, X2, X3, X4) → U93(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(U21(X)) → MARK(X)
MARK(U11(X)) → MARK(X)
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2, X3)) → A__U71(mark(X1), X2, X3)
A__U71(tt, L, N) → A__U72(a__isNat(N), L)
A__U72(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__U71(a__isNatList(L), L, N)
A__U72(tt, L) → MARK(L)
MARK(U71(X1, X2, X3)) → MARK(X1)
MARK(U72(X1, X2)) → A__U72(mark(X1), X2)
MARK(U72(X1, X2)) → MARK(X1)
MARK(U81(X)) → MARK(X)
MARK(U91(X1, X2, X3, X4)) → A__U91(mark(X1), X2, X3, X4)
A__U91(tt, IL, M, N) → A__U92(a__isNat(M), IL, M, N)
A__U92(tt, IL, M, N) → A__U93(a__isNat(N), IL, M, N)
A__U93(tt, IL, M, N) → MARK(N)
MARK(U91(X1, X2, X3, X4)) → MARK(X1)
MARK(U92(X1, X2, X3, X4)) → A__U92(mark(X1), X2, X3, X4)
MARK(U92(X1, X2, X3, X4)) → MARK(X1)
MARK(U93(X1, X2, X3, X4)) → A__U93(mark(X1), X2, X3, X4)
MARK(U93(X1, X2, X3, X4)) → MARK(X1)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt) → tt
a__U21(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U52(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIList(V2))
a__U62(tt) → tt
a__U71(tt, L, N) → a__U72(a__isNat(N), L)
a__U72(tt, L) → s(a__length(mark(L)))
a__U81(tt) → nil
a__U91(tt, IL, M, N) → a__U92(a__isNat(M), IL, M, N)
a__U92(tt, IL, M, N) → a__U93(a__isNat(N), IL, M, N)
a__U93(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__isNatList(take(V1, V2)) → a__U61(a__isNat(V1), V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U71(a__isNatList(L), L, N)
a__take(0, IL) → a__U81(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U91(a__isNatIList(IL), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3, X4)) → a__U91(mark(X1), X2, X3, X4)
mark(U92(X1, X2, X3, X4)) → a__U92(mark(X1), X2, X3, X4)
mark(U93(X1, X2, X3, X4)) → a__U93(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X) → U11(X)
a__U21(X) → U21(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__isNatList(X) → isNatList(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2) → U72(X1, X2)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__U81(X) → U81(X)
a__U91(X1, X2, X3, X4) → U91(X1, X2, X3, X4)
a__U92(X1, X2, X3, X4) → U92(X1, X2, X3, X4)
a__U93(X1, X2, X3, X4) → U93(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(U81(X)) → MARK(X)
A__U91(tt, IL, M, N) → A__U92(a__isNat(M), IL, M, N)
MARK(U91(X1, X2, X3, X4)) → MARK(X1)
MARK(U92(X1, X2, X3, X4)) → A__U92(mark(X1), X2, X3, X4)
MARK(U92(X1, X2, X3, X4)) → MARK(X1)
MARK(U93(X1, X2, X3, X4)) → A__U93(mark(X1), X2, X3, X4)
MARK(U93(X1, X2, X3, X4)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__LENGTH(x1) ) = 2x1 + 1 |
POL( A__U71(x1, ..., x3) ) = x1 + 2x2 + 1 |
POL( A__U72(x1, x2) ) = 2x2 + 1 |
POL( A__U91(x1, ..., x4) ) = x4 + 2 |
POL( A__U92(x1, ..., x4) ) = x4 + 1 |
POL( A__U93(x1, ..., x4) ) = x4 + 1 |
POL( a__U41(x1, x2) ) = 2x1 |
POL( isNatIList(x1) ) = 0 |
POL( a__isNatIList(x1) ) = 0 |
POL( a__U51(x1, x2) ) = 2x1 |
POL( a__isNatList(x1) ) = 0 |
POL( a__U61(x1, x2) ) = x1 |
POL( U71(x1, ..., x3) ) = 2x1 + 2x2 + 2x3 |
POL( a__U71(x1, ..., x3) ) = 2x1 + 2x2 + 2x3 |
POL( U72(x1, x2) ) = x1 + 2x2 |
POL( a__U72(x1, x2) ) = x1 + 2x2 |
POL( a__length(x1) ) = 2x1 |
POL( a__U81(x1) ) = x1 + 1 |
POL( U91(x1, ..., x4) ) = x1 + 2x2 + 2x3 + x4 + 1 |
POL( a__U91(x1, ..., x4) ) = x1 + 2x2 + 2x3 + x4 + 1 |
POL( U92(x1, ..., x4) ) = x1 + 2x2 + 2x3 + x4 + 1 |
POL( a__U92(x1, ..., x4) ) = x1 + 2x2 + 2x3 + x4 + 1 |
POL( U93(x1, ..., x4) ) = x1 + 2x2 + 2x3 + x4 + 1 |
POL( a__U93(x1, ..., x4) ) = x1 + 2x2 + 2x3 + x4 + 1 |
POL( take(x1, x2) ) = 2x1 + 2x2 + 1 |
POL( a__take(x1, x2) ) = 2x1 + 2x2 + 1 |
POL( cons(x1, x2) ) = x1 + x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3, X4)) → a__U91(mark(X1), X2, X3, X4)
mark(U92(X1, X2, X3, X4)) → a__U92(mark(X1), X2, X3, X4)
mark(U93(X1, X2, X3, X4)) → a__U93(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNat(X) → isNat(X)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__isNatList(take(V1, V2)) → a__U61(a__isNat(V1), V2)
a__isNatList(X) → isNatList(X)
a__U11(tt) → tt
a__U11(X) → U11(X)
a__U21(tt) → tt
a__U21(X) → U21(X)
a__U31(tt) → tt
a__U31(X) → U31(X)
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U41(X1, X2) → U41(X1, X2)
a__U42(tt) → tt
a__U42(X) → U42(X)
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U51(X1, X2) → U51(X1, X2)
a__U52(tt) → tt
a__U52(X) → U52(X)
a__U61(tt, V2) → a__U62(a__isNatIList(V2))
a__U61(X1, X2) → U61(X1, X2)
a__U62(tt) → tt
a__U62(X) → U62(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2) → U72(X1, X2)
a__length(nil) → 0
a__length(X) → length(X)
a__U81(tt) → nil
a__U81(X) → U81(X)
a__U91(X1, X2, X3, X4) → U91(X1, X2, X3, X4)
a__U92(X1, X2, X3, X4) → U92(X1, X2, X3, X4)
a__U93(X1, X2, X3, X4) → U93(X1, X2, X3, X4)
a__take(0, IL) → a__U81(a__isNatIList(IL))
a__take(X1, X2) → take(X1, X2)
a__take(s(M), cons(N, IL)) → a__U91(a__isNatIList(IL), IL, M, N)
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatIList(X) → isNatIList(X)
a__U91(tt, IL, M, N) → a__U92(a__isNat(M), IL, M, N)
a__U92(tt, IL, M, N) → a__U93(a__isNat(N), IL, M, N)
a__U93(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U71(a__isNatList(L), L, N)
a__U71(tt, L, N) → a__U72(a__isNat(N), L)
a__U72(tt, L) → s(a__length(mark(L)))
a__zeros → cons(0, zeros)
a__zeros → zeros
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(U21(X)) → MARK(X)
MARK(U11(X)) → MARK(X)
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2, X3)) → A__U71(mark(X1), X2, X3)
A__U71(tt, L, N) → A__U72(a__isNat(N), L)
A__U72(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__U71(a__isNatList(L), L, N)
A__U72(tt, L) → MARK(L)
MARK(U71(X1, X2, X3)) → MARK(X1)
MARK(U72(X1, X2)) → A__U72(mark(X1), X2)
MARK(U72(X1, X2)) → MARK(X1)
MARK(U91(X1, X2, X3, X4)) → A__U91(mark(X1), X2, X3, X4)
A__U92(tt, IL, M, N) → A__U93(a__isNat(N), IL, M, N)
A__U93(tt, IL, M, N) → MARK(N)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt) → tt
a__U21(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U52(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIList(V2))
a__U62(tt) → tt
a__U71(tt, L, N) → a__U72(a__isNat(N), L)
a__U72(tt, L) → s(a__length(mark(L)))
a__U81(tt) → nil
a__U91(tt, IL, M, N) → a__U92(a__isNat(M), IL, M, N)
a__U92(tt, IL, M, N) → a__U93(a__isNat(N), IL, M, N)
a__U93(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__isNatList(take(V1, V2)) → a__U61(a__isNat(V1), V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U71(a__isNatList(L), L, N)
a__take(0, IL) → a__U81(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U91(a__isNatIList(IL), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3, X4)) → a__U91(mark(X1), X2, X3, X4)
mark(U92(X1, X2, X3, X4)) → a__U92(mark(X1), X2, X3, X4)
mark(U93(X1, X2, X3, X4)) → a__U93(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X) → U11(X)
a__U21(X) → U21(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__isNatList(X) → isNatList(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2) → U72(X1, X2)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__U81(X) → U81(X)
a__U91(X1, X2, X3, X4) → U91(X1, X2, X3, X4)
a__U92(X1, X2, X3, X4) → U92(X1, X2, X3, X4)
a__U93(X1, X2, X3, X4) → U93(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(17) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(X)) → MARK(X)
MARK(U21(X)) → MARK(X)
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2, X3)) → A__U71(mark(X1), X2, X3)
A__U71(tt, L, N) → A__U72(a__isNat(N), L)
A__U72(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__U71(a__isNatList(L), L, N)
A__U72(tt, L) → MARK(L)
MARK(U71(X1, X2, X3)) → MARK(X1)
MARK(U72(X1, X2)) → A__U72(mark(X1), X2)
MARK(U72(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt) → tt
a__U21(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U52(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIList(V2))
a__U62(tt) → tt
a__U71(tt, L, N) → a__U72(a__isNat(N), L)
a__U72(tt, L) → s(a__length(mark(L)))
a__U81(tt) → nil
a__U91(tt, IL, M, N) → a__U92(a__isNat(M), IL, M, N)
a__U92(tt, IL, M, N) → a__U93(a__isNat(N), IL, M, N)
a__U93(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__isNatList(take(V1, V2)) → a__U61(a__isNat(V1), V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U71(a__isNatList(L), L, N)
a__take(0, IL) → a__U81(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U91(a__isNatIList(IL), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3, X4)) → a__U91(mark(X1), X2, X3, X4)
mark(U92(X1, X2, X3, X4)) → a__U92(mark(X1), X2, X3, X4)
mark(U93(X1, X2, X3, X4)) → a__U93(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X) → U11(X)
a__U21(X) → U21(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__isNatList(X) → isNatList(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2) → U72(X1, X2)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__U81(X) → U81(X)
a__U91(X1, X2, X3, X4) → U91(X1, X2, X3, X4)
a__U92(X1, X2, X3, X4) → U92(X1, X2, X3, X4)
a__U93(X1, X2, X3, X4) → U93(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(U71(X1, X2, X3)) → A__U71(mark(X1), X2, X3)
MARK(U71(X1, X2, X3)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__LENGTH(x1) ) = x1 |
POL( A__U71(x1, ..., x3) ) = 2x2 + 2x3 |
POL( A__U72(x1, x2) ) = max{0, 2x1 + 2x2 - 2} |
POL( a__U41(x1, x2) ) = x1 |
POL( isNatIList(x1) ) = 1 |
POL( a__isNatIList(x1) ) = 1 |
POL( a__U51(x1, x2) ) = x1 |
POL( a__isNatList(x1) ) = 1 |
POL( a__U61(x1, x2) ) = x1 |
POL( U71(x1, ..., x3) ) = x1 + 2x2 + 2x3 + 1 |
POL( a__U71(x1, ..., x3) ) = x1 + 2x2 + 2x3 + 1 |
POL( U72(x1, x2) ) = 2x1 + 2x2 |
POL( a__U72(x1, x2) ) = 2x1 + 2x2 |
POL( length(x1) ) = 2x1 + 2 |
POL( a__length(x1) ) = 2x1 + 2 |
POL( U91(x1, ..., x4) ) = 2x2 + 2x4 |
POL( a__U91(x1, ..., x4) ) = 2x2 + 2x4 |
POL( U92(x1, ..., x4) ) = 2x2 + 2x4 |
POL( a__U92(x1, ..., x4) ) = 2x2 + 2x4 |
POL( U93(x1, ..., x4) ) = 2x2 + 2x4 |
POL( a__U93(x1, ..., x4) ) = 2x2 + 2x4 |
POL( a__take(x1, x2) ) = x2 |
POL( cons(x1, x2) ) = 2x1 + 2x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3, X4)) → a__U91(mark(X1), X2, X3, X4)
mark(U92(X1, X2, X3, X4)) → a__U92(mark(X1), X2, X3, X4)
mark(U93(X1, X2, X3, X4)) → a__U93(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNat(X) → isNat(X)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__isNatList(take(V1, V2)) → a__U61(a__isNat(V1), V2)
a__isNatList(X) → isNatList(X)
a__U11(tt) → tt
a__U11(X) → U11(X)
a__U21(tt) → tt
a__U21(X) → U21(X)
a__U31(tt) → tt
a__U31(X) → U31(X)
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U41(X1, X2) → U41(X1, X2)
a__U42(tt) → tt
a__U42(X) → U42(X)
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U51(X1, X2) → U51(X1, X2)
a__U52(tt) → tt
a__U52(X) → U52(X)
a__U61(tt, V2) → a__U62(a__isNatIList(V2))
a__U61(X1, X2) → U61(X1, X2)
a__U62(tt) → tt
a__U62(X) → U62(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2) → U72(X1, X2)
a__length(nil) → 0
a__length(X) → length(X)
a__U81(tt) → nil
a__U81(X) → U81(X)
a__U91(X1, X2, X3, X4) → U91(X1, X2, X3, X4)
a__U92(X1, X2, X3, X4) → U92(X1, X2, X3, X4)
a__U93(X1, X2, X3, X4) → U93(X1, X2, X3, X4)
a__take(0, IL) → a__U81(a__isNatIList(IL))
a__take(X1, X2) → take(X1, X2)
a__take(s(M), cons(N, IL)) → a__U91(a__isNatIList(IL), IL, M, N)
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatIList(X) → isNatIList(X)
a__U91(tt, IL, M, N) → a__U92(a__isNat(M), IL, M, N)
a__U92(tt, IL, M, N) → a__U93(a__isNat(N), IL, M, N)
a__U93(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U71(a__isNatList(L), L, N)
a__U71(tt, L, N) → a__U72(a__isNat(N), L)
a__U72(tt, L) → s(a__length(mark(L)))
a__zeros → cons(0, zeros)
a__zeros → zeros
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(X)) → MARK(X)
MARK(U21(X)) → MARK(X)
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
A__U71(tt, L, N) → A__U72(a__isNat(N), L)
A__U72(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__U71(a__isNatList(L), L, N)
A__U72(tt, L) → MARK(L)
MARK(U72(X1, X2)) → A__U72(mark(X1), X2)
MARK(U72(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt) → tt
a__U21(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U52(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIList(V2))
a__U62(tt) → tt
a__U71(tt, L, N) → a__U72(a__isNat(N), L)
a__U72(tt, L) → s(a__length(mark(L)))
a__U81(tt) → nil
a__U91(tt, IL, M, N) → a__U92(a__isNat(M), IL, M, N)
a__U92(tt, IL, M, N) → a__U93(a__isNat(N), IL, M, N)
a__U93(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__isNatList(take(V1, V2)) → a__U61(a__isNat(V1), V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U71(a__isNatList(L), L, N)
a__take(0, IL) → a__U81(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U91(a__isNatIList(IL), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3, X4)) → a__U91(mark(X1), X2, X3, X4)
mark(U92(X1, X2, X3, X4)) → a__U92(mark(X1), X2, X3, X4)
mark(U93(X1, X2, X3, X4)) → a__U93(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X) → U11(X)
a__U21(X) → U21(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__isNatList(X) → isNatList(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2) → U72(X1, X2)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__U81(X) → U81(X)
a__U91(X1, X2, X3, X4) → U91(X1, X2, X3, X4)
a__U92(X1, X2, X3, X4) → U92(X1, X2, X3, X4)
a__U93(X1, X2, X3, X4) → U93(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(21) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
MARK(U61(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__LENGTH(x1) ) = x1 + 1 |
POL( A__U72(x1, x2) ) = x2 + 1 |
POL( A__U71(x1, ..., x3) ) = x2 + 2x3 + 1 |
POL( a__U41(x1, x2) ) = x1 + x2 |
POL( a__U51(x1, x2) ) = x1 + x2 |
POL( a__U61(x1, x2) ) = x1 + x2 + 2 |
POL( a__isNat(x1) ) = 2x1 + 2 |
POL( length(x1) ) = x1 + 2 |
POL( a__isNatList(x1) ) = x1 + 2 |
POL( isNat(x1) ) = 2x1 + 2 |
POL( U41(x1, x2) ) = x1 + x2 |
POL( isNatIList(x1) ) = x1 + 2 |
POL( a__isNatIList(x1) ) = x1 + 2 |
POL( U51(x1, x2) ) = x1 + x2 |
POL( isNatList(x1) ) = x1 + 2 |
POL( U61(x1, x2) ) = x1 + x2 + 2 |
POL( U71(x1, ..., x3) ) = x2 + 2x3 + 2 |
POL( a__U71(x1, ..., x3) ) = x2 + 2x3 + 2 |
POL( U72(x1, x2) ) = x1 + x2 |
POL( a__U72(x1, x2) ) = x1 + x2 |
POL( a__length(x1) ) = x1 + 2 |
POL( U91(x1, ..., x4) ) = x2 + 2x3 + 2x4 + 2 |
POL( a__U91(x1, ..., x4) ) = x2 + 2x3 + 2x4 + 2 |
POL( U92(x1, ..., x4) ) = x2 + 2x3 + 2x4 + 2 |
POL( a__U92(x1, ..., x4) ) = x2 + 2x3 + 2x4 + 2 |
POL( U93(x1, ..., x4) ) = x2 + 2x3 + 2x4 + 2 |
POL( a__U93(x1, ..., x4) ) = x2 + 2x3 + 2x4 + 2 |
POL( take(x1, x2) ) = 2x1 + x2 + 2 |
POL( a__take(x1, x2) ) = 2x1 + x2 + 2 |
POL( cons(x1, x2) ) = 2x1 + x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNat(X) → isNat(X)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3, X4)) → a__U91(mark(X1), X2, X3, X4)
mark(U92(X1, X2, X3, X4)) → a__U92(mark(X1), X2, X3, X4)
mark(U93(X1, X2, X3, X4)) → a__U93(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__isNatList(take(V1, V2)) → a__U61(a__isNat(V1), V2)
a__isNatList(X) → isNatList(X)
a__U11(tt) → tt
a__U11(X) → U11(X)
a__U21(tt) → tt
a__U21(X) → U21(X)
a__U31(tt) → tt
a__U31(X) → U31(X)
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U41(X1, X2) → U41(X1, X2)
a__U42(tt) → tt
a__U42(X) → U42(X)
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U51(X1, X2) → U51(X1, X2)
a__U52(tt) → tt
a__U52(X) → U52(X)
a__U61(tt, V2) → a__U62(a__isNatIList(V2))
a__U61(X1, X2) → U61(X1, X2)
a__U62(tt) → tt
a__U62(X) → U62(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2) → U72(X1, X2)
a__length(nil) → 0
a__length(X) → length(X)
a__U81(tt) → nil
a__U81(X) → U81(X)
a__U91(X1, X2, X3, X4) → U91(X1, X2, X3, X4)
a__U92(X1, X2, X3, X4) → U92(X1, X2, X3, X4)
a__U93(X1, X2, X3, X4) → U93(X1, X2, X3, X4)
a__take(0, IL) → a__U81(a__isNatIList(IL))
a__take(X1, X2) → take(X1, X2)
a__take(s(M), cons(N, IL)) → a__U91(a__isNatIList(IL), IL, M, N)
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatIList(X) → isNatIList(X)
a__U91(tt, IL, M, N) → a__U92(a__isNat(M), IL, M, N)
a__U92(tt, IL, M, N) → a__U93(a__isNat(N), IL, M, N)
a__U93(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U71(a__isNatList(L), L, N)
a__U71(tt, L, N) → a__U72(a__isNat(N), L)
a__U72(tt, L) → s(a__length(mark(L)))
a__zeros → cons(0, zeros)
a__zeros → zeros
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(X)) → MARK(X)
MARK(U21(X)) → MARK(X)
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → MARK(X)
MARK(U62(X)) → MARK(X)
A__U71(tt, L, N) → A__U72(a__isNat(N), L)
A__U72(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__U71(a__isNatList(L), L, N)
A__U72(tt, L) → MARK(L)
MARK(U72(X1, X2)) → A__U72(mark(X1), X2)
MARK(U72(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt) → tt
a__U21(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U52(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIList(V2))
a__U62(tt) → tt
a__U71(tt, L, N) → a__U72(a__isNat(N), L)
a__U72(tt, L) → s(a__length(mark(L)))
a__U81(tt) → nil
a__U91(tt, IL, M, N) → a__U92(a__isNat(M), IL, M, N)
a__U92(tt, IL, M, N) → a__U93(a__isNat(N), IL, M, N)
a__U93(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__isNatList(take(V1, V2)) → a__U61(a__isNat(V1), V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U71(a__isNatList(L), L, N)
a__take(0, IL) → a__U81(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U91(a__isNatIList(IL), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3, X4)) → a__U91(mark(X1), X2, X3, X4)
mark(U92(X1, X2, X3, X4)) → a__U92(mark(X1), X2, X3, X4)
mark(U93(X1, X2, X3, X4)) → a__U93(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X) → U11(X)
a__U21(X) → U21(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__isNatList(X) → isNatList(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2) → U72(X1, X2)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__U81(X) → U81(X)
a__U91(X1, X2, X3, X4) → U91(X1, X2, X3, X4)
a__U92(X1, X2, X3, X4) → U92(X1, X2, X3, X4)
a__U93(X1, X2, X3, X4) → U93(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(23) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
A__U72(tt, L) → MARK(L)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__LENGTH(x1) ) = 2x1 + 1 |
POL( A__U72(x1, x2) ) = max{0, x1 + 2x2 - 1} |
POL( A__U71(x1, ..., x3) ) = 2x2 + 2x3 + 1 |
POL( a__U41(x1, x2) ) = x1 |
POL( a__U51(x1, x2) ) = x1 |
POL( a__U61(x1, x2) ) = x1 |
POL( length(x1) ) = 2x1 + 2 |
POL( a__isNatList(x1) ) = 2 |
POL( isNatIList(x1) ) = 2 |
POL( a__isNatIList(x1) ) = 2 |
POL( U71(x1, ..., x3) ) = x1 + 2x2 |
POL( a__U71(x1, ..., x3) ) = x1 + 2x2 |
POL( U72(x1, x2) ) = x1 + 2x2 |
POL( a__U72(x1, x2) ) = x1 + 2x2 |
POL( a__length(x1) ) = 2x1 + 2 |
POL( U91(x1, ..., x4) ) = x2 + x4 + 2 |
POL( a__U91(x1, ..., x4) ) = x2 + x4 + 2 |
POL( U92(x1, ..., x4) ) = x1 + x2 + x4 |
POL( a__U92(x1, ..., x4) ) = x1 + x2 + x4 |
POL( U93(x1, ..., x4) ) = x2 + x4 + 2 |
POL( a__U93(x1, ..., x4) ) = x2 + x4 + 2 |
POL( take(x1, x2) ) = x2 + 2 |
POL( a__take(x1, x2) ) = x2 + 2 |
POL( cons(x1, x2) ) = x1 + x2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNat(X) → isNat(X)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3, X4)) → a__U91(mark(X1), X2, X3, X4)
mark(U92(X1, X2, X3, X4)) → a__U92(mark(X1), X2, X3, X4)
mark(U93(X1, X2, X3, X4)) → a__U93(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__isNatList(take(V1, V2)) → a__U61(a__isNat(V1), V2)
a__isNatList(X) → isNatList(X)
a__U11(tt) → tt
a__U11(X) → U11(X)
a__U21(tt) → tt
a__U21(X) → U21(X)
a__U31(tt) → tt
a__U31(X) → U31(X)
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U41(X1, X2) → U41(X1, X2)
a__U42(tt) → tt
a__U42(X) → U42(X)
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U51(X1, X2) → U51(X1, X2)
a__U52(tt) → tt
a__U52(X) → U52(X)
a__U61(tt, V2) → a__U62(a__isNatIList(V2))
a__U61(X1, X2) → U61(X1, X2)
a__U62(tt) → tt
a__U62(X) → U62(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2) → U72(X1, X2)
a__length(nil) → 0
a__length(X) → length(X)
a__U81(tt) → nil
a__U81(X) → U81(X)
a__U91(X1, X2, X3, X4) → U91(X1, X2, X3, X4)
a__U92(X1, X2, X3, X4) → U92(X1, X2, X3, X4)
a__U93(X1, X2, X3, X4) → U93(X1, X2, X3, X4)
a__take(0, IL) → a__U81(a__isNatIList(IL))
a__take(X1, X2) → take(X1, X2)
a__take(s(M), cons(N, IL)) → a__U91(a__isNatIList(IL), IL, M, N)
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatIList(X) → isNatIList(X)
a__U91(tt, IL, M, N) → a__U92(a__isNat(M), IL, M, N)
a__U92(tt, IL, M, N) → a__U93(a__isNat(N), IL, M, N)
a__U93(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U71(a__isNatList(L), L, N)
a__U71(tt, L, N) → a__U72(a__isNat(N), L)
a__U72(tt, L) → s(a__length(mark(L)))
a__zeros → cons(0, zeros)
a__zeros → zeros
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(U11(X)) → MARK(X)
MARK(U21(X)) → MARK(X)
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → MARK(X)
MARK(U62(X)) → MARK(X)
A__U71(tt, L, N) → A__U72(a__isNat(N), L)
A__U72(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__U71(a__isNatList(L), L, N)
MARK(U72(X1, X2)) → A__U72(mark(X1), X2)
MARK(U72(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt) → tt
a__U21(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U52(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIList(V2))
a__U62(tt) → tt
a__U71(tt, L, N) → a__U72(a__isNat(N), L)
a__U72(tt, L) → s(a__length(mark(L)))
a__U81(tt) → nil
a__U91(tt, IL, M, N) → a__U92(a__isNat(M), IL, M, N)
a__U92(tt, IL, M, N) → a__U93(a__isNat(N), IL, M, N)
a__U93(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__isNatList(take(V1, V2)) → a__U61(a__isNat(V1), V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U71(a__isNatList(L), L, N)
a__take(0, IL) → a__U81(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U91(a__isNatIList(IL), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3, X4)) → a__U91(mark(X1), X2, X3, X4)
mark(U92(X1, X2, X3, X4)) → a__U92(mark(X1), X2, X3, X4)
mark(U93(X1, X2, X3, X4)) → a__U93(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X) → U11(X)
a__U21(X) → U21(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__isNatList(X) → isNatList(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2) → U72(X1, X2)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__U81(X) → U81(X)
a__U91(X1, X2, X3, X4) → U91(X1, X2, X3, X4)
a__U92(X1, X2, X3, X4) → U92(X1, X2, X3, X4)
a__U93(X1, X2, X3, X4) → U93(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(25) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.
(26) Complex Obligation (AND)
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__U72(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__U71(a__isNatList(L), L, N)
A__U71(tt, L, N) → A__U72(a__isNat(N), L)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt) → tt
a__U21(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U52(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIList(V2))
a__U62(tt) → tt
a__U71(tt, L, N) → a__U72(a__isNat(N), L)
a__U72(tt, L) → s(a__length(mark(L)))
a__U81(tt) → nil
a__U91(tt, IL, M, N) → a__U92(a__isNat(M), IL, M, N)
a__U92(tt, IL, M, N) → a__U93(a__isNat(N), IL, M, N)
a__U93(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__isNatList(take(V1, V2)) → a__U61(a__isNat(V1), V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U71(a__isNatList(L), L, N)
a__take(0, IL) → a__U81(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U91(a__isNatIList(IL), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3, X4)) → a__U91(mark(X1), X2, X3, X4)
mark(U92(X1, X2, X3, X4)) → a__U92(mark(X1), X2, X3, X4)
mark(U93(X1, X2, X3, X4)) → a__U93(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X) → U11(X)
a__U21(X) → U21(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__isNatList(X) → isNatList(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2) → U72(X1, X2)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__U81(X) → U81(X)
a__U91(X1, X2, X3, X4) → U91(X1, X2, X3, X4)
a__U92(X1, X2, X3, X4) → U92(X1, X2, X3, X4)
a__U93(X1, X2, X3, X4) → U93(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(28) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
A__U71(tt, L, N) → A__U72(a__isNat(N), L)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( A__LENGTH(x1) ) = 2x1 + 1 |
POL( a__U41(x1, x2) ) = 2 |
POL( isNatIList(x1) ) = 2 |
POL( a__isNatIList(x1) ) = 2 |
POL( a__U51(x1, x2) ) = 2x2 |
POL( isNatList(x1) ) = 2x1 |
POL( a__isNatList(x1) ) = 2x1 |
POL( a__U61(x1, x2) ) = x1 |
POL( U71(x1, ..., x3) ) = 2x2 |
POL( a__U71(x1, ..., x3) ) = 2x2 |
POL( a__U72(x1, x2) ) = 2x2 |
POL( a__isNat(x1) ) = 2x1 |
POL( a__length(x1) ) = x1 |
POL( U91(x1, ..., x4) ) = 2x3 |
POL( a__U91(x1, ..., x4) ) = 2x3 |
POL( U92(x1, ..., x4) ) = 2x3 |
POL( a__U92(x1, ..., x4) ) = 2x3 |
POL( U93(x1, ..., x4) ) = 2x3 |
POL( a__U93(x1, ..., x4) ) = 2x3 |
POL( a__take(x1, x2) ) = x1 |
POL( cons(x1, x2) ) = 2x2 |
POL( A__U71(x1, ..., x3) ) = x1 + 2x2 + 1 |
POL( A__U72(x1, x2) ) = 2x2 + 1 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3, X4)) → a__U91(mark(X1), X2, X3, X4)
mark(U92(X1, X2, X3, X4)) → a__U92(mark(X1), X2, X3, X4)
mark(U93(X1, X2, X3, X4)) → a__U93(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__isNatList(take(V1, V2)) → a__U61(a__isNat(V1), V2)
a__isNatList(X) → isNatList(X)
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNat(X) → isNat(X)
a__U11(tt) → tt
a__U11(X) → U11(X)
a__U21(tt) → tt
a__U21(X) → U21(X)
a__U31(tt) → tt
a__U31(X) → U31(X)
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U41(X1, X2) → U41(X1, X2)
a__U42(tt) → tt
a__U42(X) → U42(X)
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U51(X1, X2) → U51(X1, X2)
a__U52(tt) → tt
a__U52(X) → U52(X)
a__U61(tt, V2) → a__U62(a__isNatIList(V2))
a__U61(X1, X2) → U61(X1, X2)
a__U62(tt) → tt
a__U62(X) → U62(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2) → U72(X1, X2)
a__length(nil) → 0
a__length(X) → length(X)
a__U81(tt) → nil
a__U81(X) → U81(X)
a__U91(X1, X2, X3, X4) → U91(X1, X2, X3, X4)
a__U92(X1, X2, X3, X4) → U92(X1, X2, X3, X4)
a__U93(X1, X2, X3, X4) → U93(X1, X2, X3, X4)
a__take(0, IL) → a__U81(a__isNatIList(IL))
a__take(X1, X2) → take(X1, X2)
a__take(s(M), cons(N, IL)) → a__U91(a__isNatIList(IL), IL, M, N)
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatIList(X) → isNatIList(X)
a__U91(tt, IL, M, N) → a__U92(a__isNat(M), IL, M, N)
a__U92(tt, IL, M, N) → a__U93(a__isNat(N), IL, M, N)
a__U93(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__length(cons(N, L)) → a__U71(a__isNatList(L), L, N)
a__U71(tt, L, N) → a__U72(a__isNat(N), L)
a__U72(tt, L) → s(a__length(mark(L)))
a__zeros → cons(0, zeros)
a__zeros → zeros
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
A__U72(tt, L) → A__LENGTH(mark(L))
A__LENGTH(cons(N, L)) → A__U71(a__isNatList(L), L, N)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt) → tt
a__U21(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U52(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIList(V2))
a__U62(tt) → tt
a__U71(tt, L, N) → a__U72(a__isNat(N), L)
a__U72(tt, L) → s(a__length(mark(L)))
a__U81(tt) → nil
a__U91(tt, IL, M, N) → a__U92(a__isNat(M), IL, M, N)
a__U92(tt, IL, M, N) → a__U93(a__isNat(N), IL, M, N)
a__U93(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__isNatList(take(V1, V2)) → a__U61(a__isNat(V1), V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U71(a__isNatList(L), L, N)
a__take(0, IL) → a__U81(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U91(a__isNatIList(IL), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3, X4)) → a__U91(mark(X1), X2, X3, X4)
mark(U92(X1, X2, X3, X4)) → a__U92(mark(X1), X2, X3, X4)
mark(U93(X1, X2, X3, X4)) → a__U93(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X) → U11(X)
a__U21(X) → U21(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__isNatList(X) → isNatList(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2) → U72(X1, X2)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__U81(X) → U81(X)
a__U91(X1, X2, X3, X4) → U91(X1, X2, X3, X4)
a__U92(X1, X2, X3, X4) → U92(X1, X2, X3, X4)
a__U93(X1, X2, X3, X4) → U93(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(30) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.
(31) TRUE
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(U21(X)) → MARK(X)
MARK(U11(X)) → MARK(X)
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → MARK(X)
MARK(U62(X)) → MARK(X)
MARK(U72(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
The TRS R consists of the following rules:
a__zeros → cons(0, zeros)
a__U11(tt) → tt
a__U21(tt) → tt
a__U31(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatIList(V2))
a__U42(tt) → tt
a__U51(tt, V2) → a__U52(a__isNatList(V2))
a__U52(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatIList(V2))
a__U62(tt) → tt
a__U71(tt, L, N) → a__U72(a__isNat(N), L)
a__U72(tt, L) → s(a__length(mark(L)))
a__U81(tt) → nil
a__U91(tt, IL, M, N) → a__U92(a__isNat(M), IL, M, N)
a__U92(tt, IL, M, N) → a__U93(a__isNat(N), IL, M, N)
a__U93(tt, IL, M, N) → cons(mark(N), take(M, IL))
a__isNat(0) → tt
a__isNat(length(V1)) → a__U11(a__isNatList(V1))
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNatIList(V) → a__U31(a__isNatList(V))
a__isNatIList(zeros) → tt
a__isNatIList(cons(V1, V2)) → a__U41(a__isNat(V1), V2)
a__isNatList(nil) → tt
a__isNatList(cons(V1, V2)) → a__U51(a__isNat(V1), V2)
a__isNatList(take(V1, V2)) → a__U61(a__isNat(V1), V2)
a__length(nil) → 0
a__length(cons(N, L)) → a__U71(a__isNatList(L), L, N)
a__take(0, IL) → a__U81(a__isNatIList(IL))
a__take(s(M), cons(N, IL)) → a__U91(a__isNatIList(IL), IL, M, N)
mark(zeros) → a__zeros
mark(U11(X)) → a__U11(mark(X))
mark(U21(X)) → a__U21(mark(X))
mark(U31(X)) → a__U31(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(isNatIList(X)) → a__isNatIList(X)
mark(U51(X1, X2)) → a__U51(mark(X1), X2)
mark(U52(X)) → a__U52(mark(X))
mark(isNatList(X)) → a__isNatList(X)
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(length(X)) → a__length(mark(X))
mark(U81(X)) → a__U81(mark(X))
mark(U91(X1, X2, X3, X4)) → a__U91(mark(X1), X2, X3, X4)
mark(U92(X1, X2, X3, X4)) → a__U92(mark(X1), X2, X3, X4)
mark(U93(X1, X2, X3, X4)) → a__U93(mark(X1), X2, X3, X4)
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(nil) → nil
a__zeros → zeros
a__U11(X) → U11(X)
a__U21(X) → U21(X)
a__U31(X) → U31(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__isNatIList(X) → isNatIList(X)
a__U51(X1, X2) → U51(X1, X2)
a__U52(X) → U52(X)
a__isNatList(X) → isNatList(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U72(X1, X2) → U72(X1, X2)
a__isNat(X) → isNat(X)
a__length(X) → length(X)
a__U81(X) → U81(X)
a__U91(X1, X2, X3, X4) → U91(X1, X2, X3, X4)
a__U92(X1, X2, X3, X4) → U92(X1, X2, X3, X4)
a__U93(X1, X2, X3, X4) → U93(X1, X2, X3, X4)
a__take(X1, X2) → take(X1, X2)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(33) UsableRulesProof (EQUIVALENT transformation)
We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MARK(U21(X)) → MARK(X)
MARK(U11(X)) → MARK(X)
MARK(U31(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X1, X2)) → MARK(X1)
MARK(U52(X)) → MARK(X)
MARK(U62(X)) → MARK(X)
MARK(U72(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(35) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MARK(U21(X)) → MARK(X)
The graph contains the following edges 1 > 1
- MARK(U11(X)) → MARK(X)
The graph contains the following edges 1 > 1
- MARK(U31(X)) → MARK(X)
The graph contains the following edges 1 > 1
- MARK(U41(X1, X2)) → MARK(X1)
The graph contains the following edges 1 > 1
- MARK(U42(X)) → MARK(X)
The graph contains the following edges 1 > 1
- MARK(U51(X1, X2)) → MARK(X1)
The graph contains the following edges 1 > 1
- MARK(U52(X)) → MARK(X)
The graph contains the following edges 1 > 1
- MARK(U62(X)) → MARK(X)
The graph contains the following edges 1 > 1
- MARK(U72(X1, X2)) → MARK(X1)
The graph contains the following edges 1 > 1
- MARK(cons(X1, X2)) → MARK(X1)
The graph contains the following edges 1 > 1
- MARK(s(X)) → MARK(X)
The graph contains the following edges 1 > 1
(36) YES