(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(nil) → 0
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(U11(x1)) = x1
POL(U21(x1)) = x1
POL(U31(x1)) = x1
POL(U41(x1, x2)) = x1 + 2·x2
POL(U42(x1)) = x1
POL(U51(x1, x2)) = x1 + x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 1 + 2·x1 + 2·x2 + 2·x3
POL(U62(x1, x2)) = 1 + x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = x1 + 2·x2
POL(n__length(x1)) = 1 + 2·x1
POL(n__nil) = 2
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 2
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
isNat(n__length(V1)) → U11(isNatList(activate(V1)))
isNatList(n__nil) → tt
length(nil) → 0
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt) → tt
U21(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
(3) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(U11(x1)) = 1 + x1
POL(U21(x1)) = x1
POL(U31(x1)) = 1 + x1
POL(U41(x1, x2)) = 1 + x1 + 2·x2
POL(U42(x1)) = x1
POL(U51(x1, x2)) = x1 + x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 2·x1 + 2·x2 + 2·x3
POL(U62(x1, x2)) = 2·x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + 2·x2
POL(isNat(x1)) = 1 + x1
POL(isNatIList(x1)) = 2 + x1
POL(isNatList(x1)) = 1 + x1
POL(length(x1)) = 2 + 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = x1 + 2·x2
POL(n__length(x1)) = 2 + 2·x1
POL(n__nil) = 2
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 2
POL(s(x1)) = x1
POL(tt) = 1
POL(zeros) = 0
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
U11(tt) → tt
U31(tt) → tt
isNatIList(n__zeros) → tt
(4) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(V) → U31(isNatList(activate(V)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
(5) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Polynomial interpretation [POLO]:
POL(0) = 0
POL(U21(x1)) = x1
POL(U31(x1)) = x1
POL(U41(x1, x2)) = 2 + x1 + 2·x2
POL(U42(x1)) = x1
POL(U51(x1, x2)) = x1 + x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 2 + x1 + 2·x2 + 2·x3
POL(U62(x1, x2)) = 2 + 2·x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 2 + 2·x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2 + 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 2 + 2·x1
POL(n__nil) = 2
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 2
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
isNatIList(V) → U31(isNatList(activate(V)))
(6) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
(7) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ZEROS → CONS(0, n__zeros)
ZEROS → 01
U411(tt, V2) → U421(isNatIList(activate(V2)))
U411(tt, V2) → ISNATILIST(activate(V2))
U411(tt, V2) → ACTIVATE(V2)
U511(tt, V2) → U521(isNatList(activate(V2)))
U511(tt, V2) → ISNATLIST(activate(V2))
U511(tt, V2) → ACTIVATE(V2)
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
U611(tt, L, N) → ISNAT(activate(N))
U611(tt, L, N) → ACTIVATE(N)
U611(tt, L, N) → ACTIVATE(L)
U621(tt, L) → S(length(activate(L)))
U621(tt, L) → LENGTH(activate(L))
U621(tt, L) → ACTIVATE(L)
ISNAT(n__s(V1)) → U211(isNat(activate(V1)))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
ISNATILIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
LENGTH(cons(N, L)) → ACTIVATE(L)
ACTIVATE(n__zeros) → ZEROS
ACTIVATE(n__0) → 01
ACTIVATE(n__length(X)) → LENGTH(X)
ACTIVATE(n__s(X)) → S(X)
ACTIVATE(n__cons(X1, X2)) → CONS(X1, X2)
ACTIVATE(n__nil) → NIL
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(9) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 15 less nodes.
(10) Complex Obligation (AND)
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__length(X)) → LENGTH(X)
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
U621(tt, L) → LENGTH(activate(L))
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
U511(tt, V2) → ISNATLIST(activate(V2))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
U511(tt, V2) → ACTIVATE(V2)
LENGTH(cons(N, L)) → ACTIVATE(L)
U621(tt, L) → ACTIVATE(L)
U611(tt, L, N) → ISNAT(activate(N))
U611(tt, L, N) → ACTIVATE(N)
U611(tt, L, N) → ACTIVATE(L)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) UsableRulesReductionPairsProof (EQUIVALENT transformation)
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
No dependency pairs are removed.
The following rules are removed from R:
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
Used ordering: POLO with Polynomial interpretation [POLO]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(ISNAT(x1)) = 2·x1
POL(ISNATLIST(x1)) = 2·x1
POL(LENGTH(x1)) = 2·x1
POL(U21(x1)) = x1
POL(U51(x1, x2)) = x1 + x2
POL(U511(x1, x2)) = x1 + 2·x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = x1 + 2·x2 + 2·x3
POL(U611(x1, x2, x3)) = 2·x1 + 2·x2 + 2·x3
POL(U62(x1, x2)) = x1 + 2·x2
POL(U621(x1, x2)) = x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = 2·x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 2·x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__length(X)) → LENGTH(X)
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
U621(tt, L) → LENGTH(activate(L))
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
U511(tt, V2) → ISNATLIST(activate(V2))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
U511(tt, V2) → ACTIVATE(V2)
LENGTH(cons(N, L)) → ACTIVATE(L)
U621(tt, L) → ACTIVATE(L)
U611(tt, L, N) → ISNAT(activate(N))
U611(tt, L, N) → ACTIVATE(N)
U611(tt, L, N) → ACTIVATE(L)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(14) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
ACTIVATE(n__length(X)) → LENGTH(X)
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(ISNAT(x1)) = x1
POL(ISNATLIST(x1)) = x1
POL(LENGTH(x1)) = 2·x1
POL(U21(x1)) = x1
POL(U51(x1, x2)) = x1 + 2·x2
POL(U511(x1, x2)) = x1 + 2·x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 1 + 2·x1 + 2·x2 + 2·x3
POL(U611(x1, x2, x3)) = 2·x1 + 2·x2 + 2·x3
POL(U62(x1, x2)) = 1 + x1 + 2·x2
POL(U621(x1, x2)) = 2·x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 1 + 2·x1
POL(n__nil) = 2
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 2
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
U621(tt, L) → LENGTH(activate(L))
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
U511(tt, V2) → ISNATLIST(activate(V2))
ISNATLIST(n__cons(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
U511(tt, V2) → ACTIVATE(V2)
LENGTH(cons(N, L)) → ACTIVATE(L)
U621(tt, L) → ACTIVATE(L)
U611(tt, L, N) → ISNAT(activate(N))
U611(tt, L, N) → ACTIVATE(N)
U611(tt, L, N) → ACTIVATE(L)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(16) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 11 less nodes.
(17) Complex Obligation (AND)
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNAT(n__s(V1)) → ISNAT(activate(V1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ISNAT(n__s(V1)) → ISNAT(activate(V1))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( ISNAT(x1) ) = max{0, 2x1 - 2} |
POL( n__s(x1) ) = 2x1 + 2 |
POL( n__cons(x1, x2) ) = x1 + 2 |
POL( cons(x1, x2) ) = x1 + 2 |
POL( U61(x1, ..., x3) ) = 2x1 + 1 |
POL( isNatList(x1) ) = max{0, -2} |
POL( U51(x1, x2) ) = max{0, x1 - 2} |
POL( U62(x1, x2) ) = x1 + 2 |
POL( U52(x1) ) = max{0, 2x1 - 2} |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
length(X) → n__length(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
s(X) → n__s(X)
zeros → cons(0, n__zeros)
zeros → n__zeros
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
(20) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(21) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(22) YES
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, V2) → ISNATLIST(activate(V2))
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(24) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U511(
tt,
V2) →
ISNATLIST(
activate(
V2)) at position [0] we obtained the following new rules [LPAR04]:
U511(tt, n__zeros) → ISNATLIST(zeros) → U511(tt, n__zeros) → ISNATLIST(zeros)
U511(tt, n__0) → ISNATLIST(0) → U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__length(x0)) → ISNATLIST(length(x0)) → U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__s(x0)) → ISNATLIST(s(x0)) → U511(tt, n__s(x0)) → ISNATLIST(s(x0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1)) → U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
U511(tt, n__nil) → ISNATLIST(nil) → U511(tt, n__nil) → ISNATLIST(nil)
U511(tt, x0) → ISNATLIST(x0) → U511(tt, x0) → ISNATLIST(x0)
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(V1, V2)) → U511(isNat(activate(V1)), activate(V2))
U511(tt, n__zeros) → ISNATLIST(zeros)
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
U511(tt, n__nil) → ISNATLIST(nil)
U511(tt, x0) → ISNATLIST(x0)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(26) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATLIST(
n__cons(
V1,
V2)) →
U511(
isNat(
activate(
V1)),
activate(
V2)) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1)) → ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1)) → ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1)) → ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1)) → ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1)) → ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1)) → ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1)) → ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__zeros) → ISNATLIST(zeros)
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
U511(tt, n__nil) → ISNATLIST(nil)
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(28) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U511(
tt,
n__zeros) →
ISNATLIST(
zeros) at position [0] we obtained the following new rules [LPAR04]:
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros)) → U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__zeros) → U511(tt, n__zeros) → ISNATLIST(n__zeros)
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__0) → ISNATLIST(0)
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
U511(tt, n__nil) → ISNATLIST(nil)
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__zeros)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(30) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__zeros, y1)) → U511(isNat(zeros), activate(y1))
U511(tt, n__0) → ISNATLIST(0)
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(32) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATLIST(
n__cons(
n__zeros,
y1)) →
U511(
isNat(
zeros),
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0)) → ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__zeros), activate(y0)) → ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__zeros), activate(y0))
(33) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__0) → ISNATLIST(0)
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__zeros), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(34) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__0, y1)) → U511(isNat(0), activate(y1))
U511(tt, n__0) → ISNATLIST(0)
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(36) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATLIST(
n__cons(
n__0,
y1)) →
U511(
isNat(
0),
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0)) → ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__0) → ISNATLIST(0)
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(38) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U511(
tt,
n__0) →
ISNATLIST(
0) at position [0] we obtained the following new rules [LPAR04]:
U511(tt, n__0) → ISNATLIST(n__0) → U511(tt, n__0) → ISNATLIST(n__0)
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__0) → ISNATLIST(n__0)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(40) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(41) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__s(x0)) → ISNATLIST(s(x0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(42) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U511(
tt,
n__s(
x0)) →
ISNATLIST(
s(
x0)) at position [0] we obtained the following new rules [LPAR04]:
U511(tt, n__s(x0)) → ISNATLIST(n__s(x0)) → U511(tt, n__s(x0)) → ISNATLIST(n__s(x0))
(43) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__s(x0)) → ISNATLIST(n__s(x0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(44) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(45) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(s(x0)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(46) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATLIST(
n__cons(
n__s(
x0),
y1)) →
U511(
isNat(
s(
x0)),
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1)) → ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
(47) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(cons(x0, x1))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(48) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U511(
tt,
n__cons(
x0,
x1)) →
ISNATLIST(
cons(
x0,
x1)) at position [0] we obtained the following new rules [LPAR04]:
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1)) → U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
(49) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__cons(x0, x1), y1)) → U511(isNat(cons(x0, x1)), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(50) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATLIST(
n__cons(
n__cons(
x0,
x1),
y1)) →
U511(
isNat(
cons(
x0,
x1)),
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(n__cons(x0, x1), y2)) → U511(isNat(n__cons(x0, x1)), activate(y2)) → ISNATLIST(n__cons(n__cons(x0, x1), y2)) → U511(isNat(n__cons(x0, x1)), activate(y2))
(51) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__cons(x0, x1), y2)) → U511(isNat(n__cons(x0, x1)), activate(y2))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(52) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(53) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__nil) → ISNATLIST(nil)
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(54) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U511(
tt,
n__nil) →
ISNATLIST(
nil) at position [0] we obtained the following new rules [LPAR04]:
U511(tt, n__nil) → ISNATLIST(n__nil) → U511(tt, n__nil) → ISNATLIST(n__nil)
(55) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__nil) → ISNATLIST(n__nil)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(56) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(57) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__nil, y1)) → U511(isNat(nil), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(58) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATLIST(
n__cons(
n__nil,
y1)) →
U511(
isNat(
nil),
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(n__nil, y0)) → U511(isNat(n__nil), activate(y0)) → ISNATLIST(n__cons(n__nil, y0)) → U511(isNat(n__nil), activate(y0))
(59) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
ISNATLIST(n__cons(n__nil, y0)) → U511(isNat(n__nil), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(60) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(61) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(62) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U511(
tt,
n__zeros) →
ISNATLIST(
cons(
0,
n__zeros)) at position [0] we obtained the following new rules [LPAR04]:
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros)) → U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros)) → U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
(63) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(0, n__zeros)), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(64) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATLIST(
n__cons(
n__zeros,
y0)) →
U511(
isNat(
cons(
0,
n__zeros)),
activate(
y0)) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(0, n__zeros)), activate(y0)) → ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(n__0, n__zeros)), activate(y0)) → ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(n__0, n__zeros)), activate(y0))
(65) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(0, n__zeros)), activate(y0))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(n__0, n__zeros)), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(66) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(67) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(cons(n__0, n__zeros)), activate(y0))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(68) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATLIST(
n__cons(
n__zeros,
y0)) →
U511(
isNat(
cons(
n__0,
n__zeros)),
activate(
y0)) at position [0] we obtained the following new rules [LPAR04]:
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(n__0, n__zeros)), activate(y0)) → ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(n__0, n__zeros)), activate(y0))
(69) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
ISNATLIST(n__cons(n__zeros, y0)) → U511(isNat(n__cons(n__0, n__zeros)), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(70) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(71) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(72) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U511(
tt,
n__zeros) →
ISNATLIST(
cons(
n__0,
n__zeros)) at position [0] we obtained the following new rules [LPAR04]:
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros)) → U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
(73) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(74) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
U511(tt, n__length(x0)) → ISNATLIST(length(x0))
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ISNATLIST(x1)) = 1 + x1
POL(U21(x1)) = x1
POL(U51(x1, x2)) = x1 + x2
POL(U511(x1, x2)) = 1 + x1 + 2·x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 1 + x1 + x2 + x3
POL(U62(x1, x2)) = 1 + x1 + x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = x1 + 2·x2
POL(n__length(x1)) = 1 + x1
POL(n__nil) = 1
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 1
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
(75) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(76) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
ISNATLIST(n__cons(n__length(x0), y1)) → U511(isNat(length(x0)), activate(y1))
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ISNATLIST(x1)) = 1 + 2·x1
POL(U21(x1)) = x1
POL(U51(x1, x2)) = x1 + x2
POL(U511(x1, x2)) = x1 + 2·x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = x1 + x2 + x3
POL(U62(x1, x2)) = x1 + x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + 2·x2
POL(isNat(x1)) = 1 + x1
POL(isNatList(x1)) = 1 + x1
POL(length(x1)) = 1 + x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = x1 + 2·x2
POL(n__length(x1)) = 1 + x1
POL(n__nil) = 1
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 1
POL(s(x1)) = x1
POL(tt) = 1
POL(zeros) = 0
(77) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(78) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ISNATLIST(n__cons(n__s(x0), y1)) → U511(isNat(n__s(x0)), activate(y1))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( U511(x1, x2) ) = x1 + x2 + 1 |
POL( U21(x1) ) = max{0, 2x1 - 1} |
POL( U51(x1, x2) ) = max{0, 2x1 + x2 - 1} |
POL( activate(x1) ) = 2x1 |
POL( U61(x1, ..., x3) ) = x1 + 1 |
POL( isNatList(x1) ) = x1 + 1 |
POL( length(x1) ) = x1 + 2 |
POL( n__length(x1) ) = x1 + 1 |
POL( n__cons(x1, x2) ) = x1 + 2x2 |
POL( cons(x1, x2) ) = 2x1 + 2x2 |
POL( ISNATLIST(x1) ) = x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
0 → n__0
length(X) → n__length(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
s(X) → n__s(X)
zeros → cons(0, n__zeros)
zeros → n__zeros
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
(79) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U511(tt, x0) → ISNATLIST(x0)
ISNATLIST(n__cons(x0, y1)) → U511(isNat(x0), activate(y1))
U511(tt, n__cons(x0, x1)) → ISNATLIST(n__cons(x0, x1))
ISNATLIST(n__cons(n__0, y0)) → U511(isNat(n__0), activate(y0))
U511(tt, n__zeros) → ISNATLIST(n__cons(0, n__zeros))
U511(tt, n__zeros) → ISNATLIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(80) NonTerminationLoopProof (COMPLETE transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
U511(
isNat(
n__0),
activate(
n__zeros)) evaluates to t =
U511(
isNat(
n__0),
activate(
n__zeros))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceU511(isNat(n__0), activate(n__zeros)) →
U511(
isNat(
n__0),
n__zeros)
with rule
activate(
X) →
X at position [1] and matcher [
X /
n__zeros]
U511(isNat(n__0), n__zeros) →
U511(
tt,
n__zeros)
with rule
isNat(
n__0) →
tt at position [0] and matcher [ ]
U511(tt, n__zeros) →
ISNATLIST(
n__cons(
n__0,
n__zeros))
with rule
U511(
tt,
n__zeros) →
ISNATLIST(
n__cons(
n__0,
n__zeros)) at position [] and matcher [ ]
ISNATLIST(n__cons(n__0, n__zeros)) →
U511(
isNat(
n__0),
activate(
n__zeros))
with rule
ISNATLIST(
n__cons(
x0,
y1)) →
U511(
isNat(
x0),
activate(
y1))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(81) NO
(82) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
U621(tt, L) → LENGTH(activate(L))
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(83) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
LENGTH(cons(N, L)) → U611(isNatList(activate(L)), activate(L), N)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( U611(x1, ..., x3) ) = x1 |
POL( U61(x1, ..., x3) ) = max{0, 2x1 - 2} |
POL( U52(x1) ) = max{0, 2x1 - 2} |
POL( length(x1) ) = max{0, -2} |
POL( activate(x1) ) = x1 + 2 |
POL( n__cons(x1, x2) ) = 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(X) → n__length(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
s(X) → n__s(X)
zeros → cons(0, n__zeros)
zeros → n__zeros
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
(84) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U611(tt, L, N) → U621(isNat(activate(N)), activate(L))
U621(tt, L) → LENGTH(activate(L))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U62(tt, L) → s(length(activate(L)))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(85) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.
(86) TRUE
(87) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, V2) → ISNATILIST(activate(V2))
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U21(tt) → tt
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(88) UsableRulesReductionPairsProof (EQUIVALENT transformation)
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
No dependency pairs are removed.
The following rules are removed from R:
U41(tt, V2) → U42(isNatIList(activate(V2)))
U42(tt) → tt
isNatIList(n__cons(V1, V2)) → U41(isNat(activate(V1)), activate(V2))
Used ordering: POLO with Polynomial interpretation [POLO]:
POL(0) = 0
POL(ISNATILIST(x1)) = x1
POL(U21(x1)) = x1
POL(U411(x1, x2)) = x1 + 2·x2
POL(U51(x1, x2)) = x1 + x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 2·x1 + 2·x2 + 2·x3
POL(U62(x1, x2)) = x1 + 2·x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2·x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 2·x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
(89) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, V2) → ISNATILIST(activate(V2))
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(90) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U411(
tt,
V2) →
ISNATILIST(
activate(
V2)) at position [0] we obtained the following new rules [LPAR04]:
U411(tt, n__zeros) → ISNATILIST(zeros) → U411(tt, n__zeros) → ISNATILIST(zeros)
U411(tt, n__0) → ISNATILIST(0) → U411(tt, n__0) → ISNATILIST(0)
U411(tt, n__length(x0)) → ISNATILIST(length(x0)) → U411(tt, n__length(x0)) → ISNATILIST(length(x0))
U411(tt, n__s(x0)) → ISNATILIST(s(x0)) → U411(tt, n__s(x0)) → ISNATILIST(s(x0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1)) → U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
U411(tt, n__nil) → ISNATILIST(nil) → U411(tt, n__nil) → ISNATILIST(nil)
U411(tt, x0) → ISNATILIST(x0) → U411(tt, x0) → ISNATILIST(x0)
(91) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(V1, V2)) → U411(isNat(activate(V1)), activate(V2))
U411(tt, n__zeros) → ISNATILIST(zeros)
U411(tt, n__0) → ISNATILIST(0)
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
U411(tt, n__s(x0)) → ISNATILIST(s(x0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
U411(tt, n__nil) → ISNATILIST(nil)
U411(tt, x0) → ISNATILIST(x0)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(92) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATILIST(
n__cons(
V1,
V2)) →
U411(
isNat(
activate(
V1)),
activate(
V2)) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1)) → ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1))
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1)) → ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1)) → ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1)) → ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1)) → ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1)) → ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1)) → ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
(93) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__zeros) → ISNATILIST(zeros)
U411(tt, n__0) → ISNATILIST(0)
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
U411(tt, n__s(x0)) → ISNATILIST(s(x0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
U411(tt, n__nil) → ISNATILIST(nil)
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1))
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(94) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U411(
tt,
n__zeros) →
ISNATILIST(
zeros) at position [0] we obtained the following new rules [LPAR04]:
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros)) → U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(n__zeros) → U411(tt, n__zeros) → ISNATILIST(n__zeros)
(95) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__0) → ISNATILIST(0)
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
U411(tt, n__s(x0)) → ISNATILIST(s(x0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
U411(tt, n__nil) → ISNATILIST(nil)
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1))
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(n__zeros)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(96) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(97) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__zeros, y1)) → U411(isNat(zeros), activate(y1))
U411(tt, n__0) → ISNATILIST(0)
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(x0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(98) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATILIST(
n__cons(
n__zeros,
y1)) →
U411(
isNat(
zeros),
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0)) → ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__zeros), activate(y0)) → ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__zeros), activate(y0))
(99) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__0) → ISNATILIST(0)
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(x0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__zeros), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(100) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(101) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__0, y1)) → U411(isNat(0), activate(y1))
U411(tt, n__0) → ISNATILIST(0)
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(x0))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(102) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATILIST(
n__cons(
n__0,
y1)) →
U411(
isNat(
0),
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0)) → ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
(103) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__0) → ISNATILIST(0)
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(x0))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(104) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U411(
tt,
n__0) →
ISNATILIST(
0) at position [0] we obtained the following new rules [LPAR04]:
U411(tt, n__0) → ISNATILIST(n__0) → U411(tt, n__0) → ISNATILIST(n__0)
(105) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(x0))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__0) → ISNATILIST(n__0)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(106) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(107) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__s(x0)) → ISNATILIST(s(x0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(108) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U411(
tt,
n__s(
x0)) →
ISNATILIST(
s(
x0)) at position [0] we obtained the following new rules [LPAR04]:
U411(tt, n__s(x0)) → ISNATILIST(n__s(x0)) → U411(tt, n__s(x0)) → ISNATILIST(n__s(x0))
(109) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__s(x0)) → ISNATILIST(n__s(x0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(110) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(111) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(s(x0)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(112) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATILIST(
n__cons(
n__s(
x0),
y1)) →
U411(
isNat(
s(
x0)),
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1)) → ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
(113) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(cons(x0, x1))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(114) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U411(
tt,
n__cons(
x0,
x1)) →
ISNATILIST(
cons(
x0,
x1)) at position [0] we obtained the following new rules [LPAR04]:
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1)) → U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
(115) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__cons(x0, x1), y1)) → U411(isNat(cons(x0, x1)), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(116) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATILIST(
n__cons(
n__cons(
x0,
x1),
y1)) →
U411(
isNat(
cons(
x0,
x1)),
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(n__cons(x0, x1), y2)) → U411(isNat(n__cons(x0, x1)), activate(y2)) → ISNATILIST(n__cons(n__cons(x0, x1), y2)) → U411(isNat(n__cons(x0, x1)), activate(y2))
(117) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__cons(x0, x1), y2)) → U411(isNat(n__cons(x0, x1)), activate(y2))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(118) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(119) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__nil) → ISNATILIST(nil)
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(120) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U411(
tt,
n__nil) →
ISNATILIST(
nil) at position [0] we obtained the following new rules [LPAR04]:
U411(tt, n__nil) → ISNATILIST(n__nil) → U411(tt, n__nil) → ISNATILIST(n__nil)
(121) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
U411(tt, n__nil) → ISNATILIST(n__nil)
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(122) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(123) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__nil, y1)) → U411(isNat(nil), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(124) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATILIST(
n__cons(
n__nil,
y1)) →
U411(
isNat(
nil),
activate(
y1)) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(n__nil, y0)) → U411(isNat(n__nil), activate(y0)) → ISNATILIST(n__cons(n__nil, y0)) → U411(isNat(n__nil), activate(y0))
(125) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
ISNATILIST(n__cons(n__nil, y0)) → U411(isNat(n__nil), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(126) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(127) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(128) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U411(
tt,
n__zeros) →
ISNATILIST(
cons(
0,
n__zeros)) at position [0] we obtained the following new rules [LPAR04]:
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros)) → U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros)) → U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros))
(129) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(0, n__zeros)), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(130) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATILIST(
n__cons(
n__zeros,
y0)) →
U411(
isNat(
cons(
0,
n__zeros)),
activate(
y0)) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__cons(0, n__zeros)), activate(y0)) → ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(n__0, n__zeros)), activate(y0)) → ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(n__0, n__zeros)), activate(y0))
(131) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__cons(0, n__zeros)), activate(y0))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(n__0, n__zeros)), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(132) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(133) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(cons(n__0, n__zeros)), activate(y0))
U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(134) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
ISNATILIST(
n__cons(
n__zeros,
y0)) →
U411(
isNat(
cons(
n__0,
n__zeros)),
activate(
y0)) at position [0] we obtained the following new rules [LPAR04]:
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__cons(n__0, n__zeros)), activate(y0)) → ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__cons(n__0, n__zeros)), activate(y0))
(135) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros))
ISNATILIST(n__cons(n__zeros, y0)) → U411(isNat(n__cons(n__0, n__zeros)), activate(y0))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(136) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(137) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
U411(tt, n__zeros) → ISNATILIST(cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(138) TransformationProof (EQUIVALENT transformation)
By narrowing [LPAR04] the rule
U411(
tt,
n__zeros) →
ISNATILIST(
cons(
n__0,
n__zeros)) at position [0] we obtained the following new rules [LPAR04]:
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros)) → U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
(139) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(140) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
U411(tt, n__length(x0)) → ISNATILIST(length(x0))
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ISNATILIST(x1)) = 2 + x1
POL(U21(x1)) = x1
POL(U411(x1, x2)) = 2 + 2·x1 + 2·x2
POL(U51(x1, x2)) = x1 + 2·x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 2 + x1 + x2 + 2·x3
POL(U62(x1, x2)) = 2 + 2·x1 + x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2 + x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 2 + x1
POL(n__nil) = 0
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(tt) = 0
POL(zeros) = 0
(141) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(142) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
ISNATILIST(n__cons(n__length(x0), y1)) → U411(isNat(length(x0)), activate(y1))
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(ISNATILIST(x1)) = 2 + x1
POL(U21(x1)) = x1
POL(U411(x1, x2)) = 1 + x1 + x2
POL(U51(x1, x2)) = x1 + 2·x2
POL(U52(x1)) = x1
POL(U61(x1, x2, x3)) = 1 + x1 + x2 + 2·x3
POL(U62(x1, x2)) = 1 + x1 + x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(isNat(x1)) = 1 + x1
POL(isNatList(x1)) = 1 + x1
POL(length(x1)) = 2 + x1
POL(n__0) = 0
POL(n__cons(x1, x2)) = 2·x1 + 2·x2
POL(n__length(x1)) = 2 + x1
POL(n__nil) = 1
POL(n__s(x1)) = x1
POL(n__zeros) = 0
POL(nil) = 1
POL(s(x1)) = x1
POL(tt) = 1
POL(zeros) = 0
(143) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(144) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04,JAR06].
The following pairs can be oriented strictly and are deleted.
ISNATILIST(n__cons(n__s(x0), y1)) → U411(isNat(n__s(x0)), activate(y1))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( U411(x1, x2) ) = 2x1 + 2x2 |
POL( U21(x1) ) = max{0, 2x1 - 1} |
POL( U51(x1, x2) ) = 2x2 + 2 |
POL( U62(x1, x2) ) = x1 + 1 |
POL( U61(x1, ..., x3) ) = 2 |
POL( isNatList(x1) ) = 2x1 + 2 |
POL( length(x1) ) = 2x1 + 2 |
POL( n__length(x1) ) = 2x1 + 2 |
POL( n__cons(x1, x2) ) = 2x1 + 2x2 |
POL( cons(x1, x2) ) = 2x1 + 2x2 |
POL( ISNATILIST(x1) ) = x1 + 2 |
The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
0 → n__0
length(X) → n__length(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U21(tt) → tt
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
s(X) → n__s(X)
zeros → cons(0, n__zeros)
zeros → n__zeros
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
(145) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U411(tt, x0) → ISNATILIST(x0)
ISNATILIST(n__cons(x0, y1)) → U411(isNat(x0), activate(y1))
U411(tt, n__cons(x0, x1)) → ISNATILIST(n__cons(x0, x1))
ISNATILIST(n__cons(n__0, y0)) → U411(isNat(n__0), activate(y0))
U411(tt, n__zeros) → ISNATILIST(n__cons(0, n__zeros))
U411(tt, n__zeros) → ISNATILIST(n__cons(n__0, n__zeros))
The TRS R consists of the following rules:
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
isNat(n__0) → tt
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U21(tt) → tt
nil → n__nil
cons(X1, X2) → n__cons(X1, X2)
s(X) → n__s(X)
length(cons(N, L)) → U61(isNatList(activate(L)), activate(L), N)
length(X) → n__length(X)
isNatList(n__cons(V1, V2)) → U51(isNat(activate(V1)), activate(V2))
U61(tt, L, N) → U62(isNat(activate(N)), activate(L))
U62(tt, L) → s(length(activate(L)))
U51(tt, V2) → U52(isNatList(activate(V2)))
U52(tt) → tt
0 → n__0
zeros → cons(0, n__zeros)
zeros → n__zeros
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(146) NonTerminationLoopProof (COMPLETE transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
U411(
isNat(
n__0),
activate(
n__zeros)) evaluates to t =
U411(
isNat(
n__0),
activate(
n__zeros))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceU411(isNat(n__0), activate(n__zeros)) →
U411(
isNat(
n__0),
n__zeros)
with rule
activate(
X) →
X at position [1] and matcher [
X /
n__zeros]
U411(isNat(n__0), n__zeros) →
U411(
tt,
n__zeros)
with rule
isNat(
n__0) →
tt at position [0] and matcher [ ]
U411(tt, n__zeros) →
ISNATILIST(
n__cons(
n__0,
n__zeros))
with rule
U411(
tt,
n__zeros) →
ISNATILIST(
n__cons(
n__0,
n__zeros)) at position [] and matcher [ ]
ISNATILIST(n__cons(n__0, n__zeros)) →
U411(
isNat(
n__0),
activate(
n__zeros))
with rule
ISNATILIST(
n__cons(
x0,
y1)) →
U411(
isNat(
x0),
activate(
y1))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(147) NO