YES
0 QTRS
↳1 QTRSRRRProof (⇔, 66 ms)
↳2 QTRS
↳3 QTRSRRRProof (⇔, 0 ms)
↳4 QTRS
↳5 QTRSRRRProof (⇔, 0 ms)
↳6 QTRS
↳7 QTRSRRRProof (⇔, 6 ms)
↳8 QTRS
↳9 QTRSRRRProof (⇔, 0 ms)
↳10 QTRS
↳11 QTRSRRRProof (⇔, 0 ms)
↳12 QTRS
↳13 RisEmptyProof (⇔, 0 ms)
↳14 YES
active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(mark(X)) → mark(from(X))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(2nd(x1)) = x1
POL(active(x1)) = 1 + 2·x1
POL(cons(x1, x2)) = 2 + x1 + x2
POL(from(x1)) = 2 + 2·x1
POL(mark(x1)) = 1 + x1
POL(ok(x1)) = 2 + 2·x1
POL(proper(x1)) = x1
POL(s(x1)) = x1
POL(top(x1)) = x1
active(2nd(cons(X, cons(Y, Z)))) → mark(Y)
active(cons(X1, X2)) → cons(active(X1), X2)
active(from(X)) → from(active(X))
from(mark(X)) → mark(from(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
active(s(X)) → s(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(2nd(x1)) = 2 + 2·x1
POL(active(x1)) = 2 + 2·x1
POL(cons(x1, x2)) = 2 + x1 + x2
POL(from(x1)) = 2 + x1
POL(mark(x1)) = x1
POL(ok(x1)) = 1 + x1
POL(proper(x1)) = 1 + 2·x1
POL(s(x1)) = 2 + x1
active(s(X)) → s(active(X))
proper(2nd(X)) → 2nd(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(s(X)) → s(proper(X))
2nd(ok(X)) → ok(2nd(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
active(from(X)) → mark(cons(X, from(s(X))))
active(2nd(X)) → 2nd(active(X))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(2nd(x1)) = 1 + x1
POL(active(x1)) = 2 + 2·x1
POL(cons(x1, x2)) = x1 + x2
POL(from(x1)) = x1
POL(mark(x1)) = x1
POL(ok(x1)) = 1 + x1
POL(s(x1)) = 2 + x1
active(2nd(X)) → 2nd(active(X))
active(from(X)) → mark(cons(X, from(s(X))))
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
from(ok(X)) → ok(from(X))
s(ok(X)) → ok(s(X))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(2nd(x1)) = 2·x1
POL(active(x1)) = 2 + 2·x1
POL(cons(x1, x2)) = 2 + 2·x1 + x2
POL(from(x1)) = 1 + 2·x1
POL(mark(x1)) = 1 + x1
POL(ok(x1)) = 1 + x1
POL(s(x1)) = x1
2nd(mark(X)) → mark(2nd(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
from(ok(X)) → ok(from(X))
active(from(X)) → mark(cons(X, from(s(X))))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(active(x1)) = 2 + 2·x1
POL(cons(x1, x2)) = x1 + x2
POL(from(x1)) = 1 + x1
POL(mark(x1)) = 2 + x1
POL(ok(x1)) = 2 + x1
POL(s(x1)) = x1
active(from(X)) → mark(cons(X, from(s(X))))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
s1 > ok1 > mark1
s_1=2
mark_1=1
ok_1=1
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))