YES
0 QTRS
↳1 QTRSRRRProof (⇔, 72 ms)
↳2 QTRS
↳3 Overlay + Local Confluence (⇔, 0 ms)
↳4 QTRS
↳5 DependencyPairsProof (⇔, 0 ms)
↳6 QDP
↳7 DependencyGraphProof (⇔, 0 ms)
↳8 TRUE
f(g(i(a, b, b'), c), d) → if(e, f(.(b, c), d'), f(.(b', c), d'))
f(g(h(a, b), c), d) → if(e, f(.(b, g(h(a, b), c)), d), f(c, d'))
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(.(x1, x2)) = 2·x1 + 2·x2
POL(a) = 0
POL(b) = 0
POL(b') = 2
POL(c) = 0
POL(d) = 0
POL(d') = 0
POL(e) = 0
POL(f(x1, x2)) = 2·x1 + 2·x2
POL(g(x1, x2)) = 2·x1 + x2
POL(h(x1, x2)) = x1 + 2·x2
POL(i(x1, x2, x3)) = 1 + x1 + 2·x2 + 2·x3
POL(if(x1, x2, x3)) = 2·x1 + 2·x2 + 2·x3
f(g(i(a, b, b'), c), d) → if(e, f(.(b, c), d'), f(.(b', c), d'))
f(g(h(a, b), c), d) → if(e, f(.(b, g(h(a, b), c)), d), f(c, d'))
f(g(h(a, b), c), d) → if(e, f(.(b, g(h(a, b), c)), d), f(c, d'))
f(g(h(a, b), c), d)
F(g(h(a, b), c), d) → F(.(b, g(h(a, b), c)), d)
F(g(h(a, b), c), d) → F(c, d')
f(g(h(a, b), c), d) → if(e, f(.(b, g(h(a, b), c)), d), f(c, d'))
f(g(h(a, b), c), d)