Input TRS: 1: le(|0|(),y) -> true() 2: le(s(x),|0|()) -> false() 3: le(s(x),s(y)) -> le(x,y) 4: minus(|0|(),y) -> |0|() 5: minus(s(x),y) -> ifminus(le(s(x),y),s(x),y) 6: ifminus(true(),s(x),y) -> |0|() 7: ifminus(false(),s(x),y) -> s(minus(x,y)) 8: div(|0|(),s(y)) -> |0|() 9: div(s(x),s(y)) -> s(div(minus(x,y),s(y))) 10: divL(x,nil()) -> x 11: divL(x,cons(y,xs)) -> divL(div(x,y),xs) 12: divL(z,cons(x,xs)) ->= divL(z,consSwap(x,xs)) 13: consSwap(x,xs) ->= cons(x,xs) 14: consSwap(x,cons(y,xs)) ->= cons(y,consSwap(x,xs)) Number of strict rules: 11 Direct Order(PosReal,>,Poly) ... failed. Freezing le 1: le❆1_|0|(y) -> true() 2: le❆1_s(x,|0|()) -> false() 3: le❆1_s(x,s(y)) -> le(x,y) 4: minus(|0|(),y) -> |0|() 5: minus(s(x),y) -> ifminus(le❆1_s(x,y),s(x),y) 6: ifminus(true(),s(x),y) -> |0|() 7: ifminus(false(),s(x),y) -> s(minus(x,y)) 8: div(|0|(),s(y)) -> |0|() 9: div(s(x),s(y)) -> s(div(minus(x,y),s(y))) 10: divL(x,nil()) -> x 11: divL(x,cons(y,xs)) -> divL(div(x,y),xs) 12: divL(z,cons(x,xs)) ->= divL(z,consSwap(x,xs)) 13: consSwap(x,xs) ->= cons(x,xs) 14: consSwap(x,cons(y,xs)) ->= cons(y,consSwap(x,xs)) 15: le(|0|(),_1) ->= le❆1_|0|(_1) 16: le(s(_1),_2) ->= le❆1_s(_1,_2) Number of strict rules: 11 Direct Order(PosReal,>,Poly) ... failed. Dependency Pairs: #1: #div(s(x),s(y)) -> #div(minus(x,y),s(y)) #2: #div(s(x),s(y)) -> #minus(x,y) #3: #divL(x,cons(y,xs)) -> #divL(div(x,y),xs) #4: #divL(x,cons(y,xs)) -> #div(x,y) #5: #divL(z,cons(x,xs)) ->? #divL(z,consSwap(x,xs)) #6: #ifminus(false(),s(x),y) -> #minus(x,y) #7: #minus(s(x),y) -> #ifminus(le❆1_s(x,y),s(x),y) #8: #minus(s(x),y) -> #le❆1_s(x,y) #9: #le(s(_1),_2) ->? #le❆1_s(_1,_2) #10: #le❆1_s(x,s(y)) -> #le(x,y) #11: #le(|0|(),_1) ->? #le❆1_|0|(_1) Number of SCCs: 4, DPs: 7, edges: 9 SCC { #1 } Removing DPs: Order(PosReal,>,Sum)... succeeded. |0|() weight: 0 le(x1,x2) weight: x1 + x2 #div(x1,x2) weight: x1 s(x1) weight: (/ 1 2) + x1 #le(x1,x2) weight: 0 minus(x1,x2) weight: (/ 1 4) + x1 false() weight: 0 div(x1,x2) weight: 0 true() weight: 0 le❆1_s(x1,x2) weight: (/ 3 4) ifminus(x1,x2,x3) weight: (/ 1 4) + x2 consSwap(x1,x2) weight: 0 le❆1_|0|(x1) weight: (/ 1 4) nil() weight: 0 #le❆1_|0|(x1) weight: 0 #le❆1_s(x1,x2) weight: 0 #ifminus(x1,x2,x3) weight: 0 divL(x1,x2) weight: 0 #minus(x1,x2) weight: 0 cons(x1,x2) weight: 0 #divL(x1,x2) weight: 0 Usable rules: { 4..7 } Removed DPs: #1 Number of SCCs: 3, DPs: 6, edges: 8 SCC { #9 #10 } Removing DPs: Order(PosReal,>,Sum)... succeeded. |0|() weight: 0 le(x1,x2) weight: x1 + x2 #div(x1,x2) weight: x1 s(x1) weight: (/ 1 2) + x1 #le(x1,x2) weight: x1 minus(x1,x2) weight: (/ 1 4) + x1 false() weight: 0 div(x1,x2) weight: 0 true() weight: 0 le❆1_s(x1,x2) weight: (/ 3 4) ifminus(x1,x2,x3) weight: (/ 1 4) + x2 consSwap(x1,x2) weight: 0 le❆1_|0|(x1) weight: (/ 1 4) nil() weight: 0 #le❆1_|0|(x1) weight: 0 #le❆1_s(x1,x2) weight: (/ 1 4) + x1 #ifminus(x1,x2,x3) weight: 0 divL(x1,x2) weight: 0 #minus(x1,x2) weight: 0 cons(x1,x2) weight: 0 #divL(x1,x2) weight: 0 Usable rules: { } Removed DPs: #9 #10 Number of SCCs: 2, DPs: 4, edges: 6 SCC { #6 #7 } Removing DPs: Order(PosReal,>,Sum)... succeeded. |0|() weight: 0 le(x1,x2) weight: x1 + x2 #div(x1,x2) weight: x1 s(x1) weight: (/ 1 2) + x1 #le(x1,x2) weight: 0 minus(x1,x2) weight: (/ 1 4) + x1 false() weight: 0 div(x1,x2) weight: 0 true() weight: 0 le❆1_s(x1,x2) weight: (/ 3 4) ifminus(x1,x2,x3) weight: (/ 1 4) + x2 consSwap(x1,x2) weight: 0 le❆1_|0|(x1) weight: (/ 1 4) nil() weight: 0 #le❆1_|0|(x1) weight: 0 #le❆1_s(x1,x2) weight: (/ 1 4) #ifminus(x1,x2,x3) weight: x2 divL(x1,x2) weight: 0 #minus(x1,x2) weight: (/ 1 4) + x1 cons(x1,x2) weight: 0 #divL(x1,x2) weight: 0 Usable rules: { } Removed DPs: #6 #7 Number of SCCs: 1, DPs: 2, edges: 4 SCC { #3 #5 } Removing DPs: Order(PosReal,>,Sum)... succeeded. |0|() weight: 0 le(x1,x2) weight: x1 + x2 #div(x1,x2) weight: x1 s(x1) weight: (/ 1 2) + x1 #le(x1,x2) weight: 0 minus(x1,x2) weight: (/ 1 4) + x1 false() weight: 0 div(x1,x2) weight: (/ 1 4) true() weight: 0 le❆1_s(x1,x2) weight: (/ 3 4) ifminus(x1,x2,x3) weight: (/ 1 4) + x2 consSwap(x1,x2) weight: (/ 1 4) + x1 + x2 le❆1_|0|(x1) weight: (/ 1 4) nil() weight: 0 #le❆1_|0|(x1) weight: 0 #le❆1_s(x1,x2) weight: (/ 1 4) #ifminus(x1,x2,x3) weight: 0 divL(x1,x2) weight: 0 #minus(x1,x2) weight: (/ 1 4) cons(x1,x2) weight: (/ 1 4) + x1 + x2 #divL(x1,x2) weight: x2 Usable rules: { 4..8 13 14 } Removed DPs: #3 Number of SCCs: 1, DPs: 1, edges: 1 SCC { #5 } Removing DPs: Order(PosReal,>,Sum)... Order(PosReal,>,Max)... QLPOpS... Order(PosReal,>,MaxSum)... QWPOpS(PosReal,>,MaxSum)... Order(PosReal,>,Sum-Sum; PosReal,≥,Sum-Sum)... Order(PosReal,>,Sum-Sum; NegReal,≥,Sum)... Order(PosReal,>,MaxSum-Sum; NegReal,≥,Sum)... failed. Removing edges: failed. Finding a loop... failed. MAYBE