YES We show the termination of the relative TRS R/S: R: g(x,y) -> x g(x,y) -> y f(|0|(),|1|(),x) -> f(s(x),x,x) f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) p2: f#(x,y,s(z)) -> f#(|0|(),|1|(),z) and R consists of: r1: g(x,y) -> x r2: g(x,y) -> y r3: f(|0|(),|1|(),x) -> f(s(x),x,x) r4: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) r5: rand(x) -> x r6: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) p2: f#(x,y,s(z)) -> f#(|0|(),|1|(),z) and R consists of: r1: g(x,y) -> x r2: g(x,y) -> y r3: f(|0|(),|1|(),x) -> f(s(x),x,x) r4: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) r5: rand(x) -> x r6: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > rand > f# > f > g > |0| > |1| argument filter: pi(f#) = [3] pi(|0|) = [] pi(|1|) = [] pi(s) = 1 pi(g) = [1, 2] pi(f) = 3 pi(rand) = [1] 2. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: f#_A(x1,x2,x3) = ((0,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x3 |0|_A() = (1,1,1,1) |1|_A() = (1,1,1,1) s_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) g_A(x1,x2) = (0,0,1,1) f_A(x1,x2,x3) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x3 rand_A(x1) = (0,0,1,1) The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) and R consists of: r1: g(x,y) -> x r2: g(x,y) -> y r3: f(|0|(),|1|(),x) -> f(s(x),x,x) r4: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) r5: rand(x) -> x r6: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: (no SCCs)