YES We show the termination of the relative TRS R/S: R: minus(x,|0|()) -> x minus(s(x),s(y)) -> minus(x,y) quot(|0|(),s(y)) -> |0|() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) plus(|0|(),y) -> y plus(s(x),y) -> s(plus(x,y)) minus(minus(x,y),z) -> minus(x,plus(y,z)) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) p3: quot#(s(x),s(y)) -> minus#(x,y) p4: plus#(s(x),y) -> plus#(x,y) p5: minus#(minus(x,y),z) -> minus#(x,plus(y,z)) p6: minus#(minus(x,y),z) -> plus#(y,z) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: rand(x) -> x r9: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p2} {p1, p5} {p4} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: rand(x) -> x r9: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: rand > plus > |0| > quot > minus > quot# > s argument filter: pi(quot#) = [1, 2] pi(s) = 1 pi(minus) = 1 pi(|0|) = [] pi(quot) = 1 pi(plus) = [1, 2] pi(rand) = [1] 2. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: quot#_A(x1,x2) = ((1,0,0,0),(0,0,0,0),(1,1,0,0),(0,1,1,0)) x1 s_A(x1) = ((1,0,0,0),(0,0,0,0),(1,1,0,0),(1,0,1,0)) x1 + (1,1,4,1) minus_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (0,3,1,1) |0|_A() = (1,2,1,1) quot_A(x1,x2) = ((1,0,0,0),(0,0,0,0),(0,1,0,0),(0,0,0,0)) x1 + (1,3,0,0) plus_A(x1,x2) = ((1,0,0,0),(0,0,0,0),(1,1,0,0),(0,0,0,0)) x1 + ((1,0,0,0),(0,1,0,0),(1,1,0,0),(0,0,0,0)) x2 + (1,2,6,9) rand_A(x1) = (0,0,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: minus#(minus(x,y),z) -> minus#(x,plus(y,z)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: rand(x) -> x r9: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: minus > s > minus# > rand > quot > |0| > plus argument filter: pi(minus#) = [1, 2] pi(s) = 1 pi(minus) = [1] pi(plus) = [2] pi(|0|) = [] pi(quot) = [] pi(rand) = 1 2. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: minus#_A(x1,x2) = (0,0,0,0) s_A(x1) = (0,2,1,1) minus_A(x1,x2) = (1,0,1,1) plus_A(x1,x2) = ((0,0,0,0),(1,0,0,0),(0,1,0,0),(0,0,0,0)) x2 + (1,1,1,2) |0|_A() = (1,3,3,3) quot_A(x1,x2) = (1,3,2,2) rand_A(x1) = x1 + (1,1,1,1) The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: rand(x) -> x r9: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: rand(x) -> x r9: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: rand > plus > quot > s > |0| > minus > minus# argument filter: pi(minus#) = [1, 2] pi(s) = 1 pi(minus) = 1 pi(|0|) = [] pi(quot) = [1] pi(plus) = [1, 2] pi(rand) = [1] 2. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: minus#_A(x1,x2) = ((1,0,0,0),(1,0,0,0),(1,0,0,0),(1,0,0,0)) x1 + ((0,0,0,0),(1,0,0,0),(1,0,0,0),(1,0,0,0)) x2 s_A(x1) = ((1,0,0,0),(0,0,0,0),(0,0,0,0),(0,1,0,0)) x1 + (1,0,0,1) minus_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,1,0,0),(1,0,0,0)) x1 + (0,1,1,1) |0|_A() = (1,1,1,1) quot_A(x1,x2) = x1 + (1,0,1,2) plus_A(x1,x2) = ((1,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x1 + x2 + (1,1,1,1) rand_A(x1) = (1,1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: plus#(s(x),y) -> plus#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) r8: rand(x) -> x r9: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: rand > plus > minus > quot > |0| > plus# > s argument filter: pi(plus#) = 1 pi(s) = 1 pi(minus) = 1 pi(|0|) = [] pi(quot) = [1] pi(plus) = [1, 2] pi(rand) = [1] 2. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: plus#_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,0,0,0),(1,1,1,0)) x1 s_A(x1) = ((1,0,0,0),(0,0,0,0),(0,1,0,0),(0,0,0,0)) x1 + (2,1,1,1) minus_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (0,1,1,1) |0|_A() = (1,1,5,2) quot_A(x1,x2) = ((1,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x1 + (1,2,4,0) plus_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(0,0,0,0),(0,0,0,0)) x1 + ((1,0,0,0),(1,1,0,0),(0,0,1,0),(1,1,0,1)) x2 + (1,1,3,2) rand_A(x1) = (0,0,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.