YES We show the termination of the relative TRS R/S: R: minus(x,o()) -> x minus(s(x),s(y)) -> minus(x,y) div(|0|(),s(y)) -> |0|() div(s(x),s(y)) -> s(div(minus(x,y),s(y))) divL(x,nil()) -> x divL(x,cons(y,xs)) -> divL(div(x,y),xs) S: cons(x,cons(y,xs)) -> cons(y,cons(x,xs)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: div#(s(x),s(y)) -> div#(minus(x,y),s(y)) p3: div#(s(x),s(y)) -> minus#(x,y) p4: divL#(x,cons(y,xs)) -> divL#(div(x,y),xs) p5: divL#(x,cons(y,xs)) -> div#(x,y) and R consists of: r1: minus(x,o()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: div(|0|(),s(y)) -> |0|() r4: div(s(x),s(y)) -> s(div(minus(x,y),s(y))) r5: divL(x,nil()) -> x r6: divL(x,cons(y,xs)) -> divL(div(x,y),xs) r7: cons(x,cons(y,xs)) -> cons(y,cons(x,xs)) The estimated dependency graph contains the following SCCs: {p4} {p2} {p1} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: divL#(x,cons(y,xs)) -> divL#(div(x,y),xs) and R consists of: r1: minus(x,o()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: div(|0|(),s(y)) -> |0|() r4: div(s(x),s(y)) -> s(div(minus(x,y),s(y))) r5: divL(x,nil()) -> x r6: divL(x,cons(y,xs)) -> divL(div(x,y),xs) r7: cons(x,cons(y,xs)) -> cons(y,cons(x,xs)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: o > minus > div > nil > divL > s > |0| > cons > divL# argument filter: pi(divL#) = [2] pi(cons) = [2] pi(div) = 1 pi(minus) = 1 pi(o) = [] pi(s) = 1 pi(|0|) = [] pi(divL) = [1, 2] pi(nil) = [] 2. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: divL#_A(x1,x2) = x2 cons_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(0,0,0,0),(0,0,0,0)) x2 + (0,1,1,1) div_A(x1,x2) = ((1,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x1 + (0,2,1,2) minus_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,1,0)) x1 + (0,1,0,1) o_A() = (1,1,1,1) s_A(x1) = x1 + (1,0,1,1) |0|_A() = (1,1,3,3) divL_A(x1,x2) = ((1,0,0,0),(0,0,0,0),(0,0,0,0),(0,1,0,0)) x1 + ((1,0,0,0),(0,0,0,0),(0,1,0,0),(0,0,0,0)) x2 + (1,1,0,1) nil_A() = (0,1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: div#(s(x),s(y)) -> div#(minus(x,y),s(y)) and R consists of: r1: minus(x,o()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: div(|0|(),s(y)) -> |0|() r4: div(s(x),s(y)) -> s(div(minus(x,y),s(y))) r5: divL(x,nil()) -> x r6: divL(x,cons(y,xs)) -> divL(div(x,y),xs) r7: cons(x,cons(y,xs)) -> cons(y,cons(x,xs)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > div > cons > divL > |0| > minus > o > div# > nil argument filter: pi(div#) = [1] pi(s) = [1] pi(minus) = 1 pi(o) = [] pi(div) = 1 pi(|0|) = [] pi(divL) = [1, 2] pi(nil) = [] pi(cons) = [2] 2. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: div#_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(1,0,0,0),(0,1,1,0)) x1 s_A(x1) = ((0,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x1 + (1,1,3,0) minus_A(x1,x2) = x1 + (1,2,1,1) o_A() = (1,1,0,0) div_A(x1,x2) = ((0,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x1 + (2,2,6,1) |0|_A() = (1,3,1,1) divL_A(x1,x2) = (0,0,0,1) nil_A() = (1,1,1,1) cons_A(x1,x2) = (1,1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: minus(x,o()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: div(|0|(),s(y)) -> |0|() r4: div(s(x),s(y)) -> s(div(minus(x,y),s(y))) r5: divL(x,nil()) -> x r6: divL(x,cons(y,xs)) -> divL(div(x,y),xs) r7: cons(x,cons(y,xs)) -> cons(y,cons(x,xs)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: cons > div > s > |0| > nil > divL > o > minus > minus# argument filter: pi(minus#) = 1 pi(s) = [1] pi(minus) = 1 pi(o) = [] pi(div) = 1 pi(|0|) = [] pi(divL) = 1 pi(nil) = [] pi(cons) = 2 2. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: minus#_A(x1,x2) = ((1,0,0,0),(0,0,0,0),(0,0,0,0),(0,1,0,0)) x1 s_A(x1) = ((0,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x1 + (1,1,2,1) minus_A(x1,x2) = x1 + (1,1,1,1) o_A() = (1,1,1,0) div_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(1,0,0,0),(0,0,0,0)) x1 + (0,2,1,2) |0|_A() = (1,1,3,3) divL_A(x1,x2) = x1 + (1,0,0,1) nil_A() = (1,1,1,1) cons_A(x1,x2) = (1,1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.