YES We show the termination of the relative TRS R/S: R: le(|0|(),y) -> true() le(s(x),|0|()) -> false() le(s(x),s(y)) -> le(x,y) minus(|0|(),y) -> |0|() minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) if_minus(true(),s(x),y) -> |0|() if_minus(false(),s(x),y) -> s(minus(x,y)) mod(|0|(),y) -> |0|() mod(s(x),|0|()) -> |0|() mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) if_mod(false(),s(x),s(y)) -> s(x) S: rand(x) -> x rand(x) -> rand(s(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) p2: minus#(s(x),y) -> if_minus#(le(s(x),y),s(x),y) p3: minus#(s(x),y) -> le#(s(x),y) p4: if_minus#(false(),s(x),y) -> minus#(x,y) p5: mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) p6: mod#(s(x),s(y)) -> le#(y,x) p7: if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) p8: if_mod#(true(),s(x),s(y)) -> minus#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: mod(|0|(),y) -> |0|() r9: mod(s(x),|0|()) -> |0|() r10: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r11: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r12: if_mod(false(),s(x),s(y)) -> s(x) r13: rand(x) -> x r14: rand(x) -> rand(s(x)) The estimated dependency graph contains the following SCCs: {p5, p7} {p2, p4} {p1} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) p2: mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: mod(|0|(),y) -> |0|() r9: mod(s(x),|0|()) -> |0|() r10: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r11: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r12: if_mod(false(),s(x),s(y)) -> s(x) r13: rand(x) -> x r14: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: if_mod#_A(x1,x2,x3) = ((0,0,0,0),(1,0,0,0),(0,1,0,0),(0,1,1,0)) x1 + ((1,0,0,0),(0,1,0,0),(0,0,0,0),(1,0,1,0)) x2 + ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,0,0,1)) x3 + (0,0,4,0) true_A() = (1,1,0,1) s_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,0,1,0)) x1 + (0,11,7,0) mod#_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(1,0,1,0),(0,0,1,1)) x1 + ((1,0,0,0),(0,1,0,0),(0,1,1,0),(1,0,0,1)) x2 + (0,10,0,4) minus_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(1,0,1,0)) x1 + ((0,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x2 + (0,1,2,1) le_A(x1,x2) = ((0,0,0,0),(1,0,0,0),(1,1,0,0),(0,1,1,0)) x2 + (9,2,1,2) |0|_A() = (0,12,1,0) false_A() = (1,1,14,16) if_minus_A(x1,x2,x3) = ((0,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x1 + ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,0,0,1)) x2 + ((0,0,0,0),(0,0,0,0),(1,0,0,0),(1,0,0,0)) x3 + (0,1,0,0) mod_A(x1,x2) = x1 + ((1,0,0,0),(0,1,0,0),(0,1,1,0),(1,1,0,1)) x2 + (1,1,0,12) if_mod_A(x1,x2,x3) = ((0,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x1 + ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,1,0,1)) x2 + ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,1,0,1)) x3 + (1,0,0,0) rand_A(x1) = x1 + (1,0,1,1) 2. lexicographic path order with precedence: precedence: rand > le > if_mod > false > true > if_mod# > minus > if_minus > s > mod > |0| > mod# argument filter: pi(if_mod#) = 3 pi(true) = [] pi(s) = [] pi(mod#) = 2 pi(minus) = [] pi(le) = [] pi(|0|) = [] pi(false) = [] pi(if_minus) = [2] pi(mod) = 2 pi(if_mod) = 2 pi(rand) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: if_minus#(false(),s(x),y) -> minus#(x,y) p2: minus#(s(x),y) -> if_minus#(le(s(x),y),s(x),y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: mod(|0|(),y) -> |0|() r9: mod(s(x),|0|()) -> |0|() r10: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r11: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r12: if_mod(false(),s(x),s(y)) -> s(x) r13: rand(x) -> x r14: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: if_minus#_A(x1,x2,x3) = ((1,0,0,0),(1,0,0,0),(0,0,0,0),(0,0,0,0)) x1 + x2 + x3 + (0,0,1,0) false_A() = (4,1,1,2) s_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,0,0),(0,0,0,0)) x1 + (0,4,1,6) minus#_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,0,0,0)) x1 + x2 + (4,5,0,7) le_A(x1,x2) = ((0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)) x2 + (4,2,2,1) |0|_A() = (0,0,0,1) true_A() = (1,1,3,2) minus_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(1,1,0,0),(0,0,0,0)) x1 + ((0,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x2 + (0,1,0,2) if_minus_A(x1,x2,x3) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,1,1,0)) x2 + ((0,0,0,0),(0,0,0,0),(1,0,0,0),(1,1,0,0)) x3 + (0,1,2,0) mod_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,1,0,0),(0,0,1,0)) x1 + ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,0,1,1)) x2 + (1,1,1,11) if_mod_A(x1,x2,x3) = ((0,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x1 + ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,1,1,0)) x2 + ((1,0,0,0),(0,1,0,0),(0,1,1,0),(1,1,1,1)) x3 + (1,0,2,0) rand_A(x1) = x1 + (1,0,1,1) 2. lexicographic path order with precedence: precedence: if_mod > false > if_minus# > minus# > le > true > minus > if_minus > s > |0| > rand > mod argument filter: pi(if_minus#) = 3 pi(false) = [] pi(s) = [] pi(minus#) = 2 pi(le) = [] pi(|0|) = [] pi(true) = [] pi(minus) = [] pi(if_minus) = [] pi(mod) = 2 pi(if_mod) = 3 pi(rand) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: minus(|0|(),y) -> |0|() r5: minus(s(x),y) -> if_minus(le(s(x),y),s(x),y) r6: if_minus(true(),s(x),y) -> |0|() r7: if_minus(false(),s(x),y) -> s(minus(x,y)) r8: mod(|0|(),y) -> |0|() r9: mod(s(x),|0|()) -> |0|() r10: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r11: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r12: if_mod(false(),s(x),s(y)) -> s(x) r13: rand(x) -> x r14: rand(x) -> rand(s(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^4 order: lexicographic order interpretations: le#_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,1,1,1)) x1 + ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,1,1,0)) x2 s_A(x1) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(1,1,0,1)) x1 + (0,3,3,2) le_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,1,0,1)) x2 + (2,1,2,1) |0|_A() = (0,1,1,1) true_A() = (1,1,1,0) false_A() = (1,1,1,0) minus_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(1,1,1,0),(1,0,0,1)) x1 + ((0,0,0,0),(0,0,0,0),(1,0,0,0),(1,0,0,0)) x2 + (0,1,1,0) if_minus_A(x1,x2,x3) = ((1,0,0,0),(0,1,0,0),(1,1,1,0),(0,0,0,0)) x2 + ((0,0,0,0),(0,0,0,0),(1,0,0,0),(0,0,0,0)) x3 + (0,1,0,1) mod_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,1,1,1)) x1 + ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,1,1,1)) x2 + (1,1,4,0) if_mod_A(x1,x2,x3) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(1,0,0,1)) x2 + ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,1,0,1)) x3 + (1,0,0,2) rand_A(x1) = x1 + (1,0,1,1) 2. lexicographic path order with precedence: precedence: true > rand > s > mod > if_mod > minus > if_minus > |0| > le# > le > false argument filter: pi(le#) = 1 pi(s) = [1] pi(le) = 2 pi(|0|) = [] pi(true) = [] pi(false) = [] pi(minus) = [1] pi(if_minus) = [] pi(mod) = [1] pi(if_mod) = 2 pi(rand) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.