YES We show the termination of the relative TRS R/S: R: top(ok(new(x))) -> top(check(x)) top(ok(old(x))) -> top(check(x)) S: bot() -> new(bot()) check(new(x)) -> new(check(x)) check(old(x)) -> old(check(x)) check(old(x)) -> ok(old(x)) new(ok(x)) -> ok(new(x)) old(ok(x)) -> ok(old(x)) -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: top#(ok(new(x))) -> top#(check(x)) p2: top#(ok(old(x))) -> top#(check(x)) and R consists of: r1: top(ok(new(x))) -> top(check(x)) r2: top(ok(old(x))) -> top(check(x)) r3: bot() -> new(bot()) r4: check(new(x)) -> new(check(x)) r5: check(old(x)) -> old(check(x)) r6: check(old(x)) -> ok(old(x)) r7: new(ok(x)) -> ok(new(x)) r8: old(ok(x)) -> ok(old(x)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: top#(ok(new(x))) -> top#(check(x)) p2: top#(ok(old(x))) -> top#(check(x)) and R consists of: r1: top(ok(new(x))) -> top(check(x)) r2: top(ok(old(x))) -> top(check(x)) r3: bot() -> new(bot()) r4: check(new(x)) -> new(check(x)) r5: check(old(x)) -> old(check(x)) r6: check(old(x)) -> ok(old(x)) r7: new(ok(x)) -> ok(new(x)) r8: old(ok(x)) -> ok(old(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^3 order: lexicographic order interpretations: top#_A(x1) = ((0,0,0),(0,0,0),(1,0,0)) x1 ok_A(x1) = ((1,0,0),(1,0,0),(0,0,0)) x1 + (0,3,2) new_A(x1) = ((1,0,0),(1,0,0),(0,0,0)) x1 + (0,4,1) check_A(x1) = ((1,0,0),(0,1,0),(0,1,1)) x1 + (0,4,0) old_A(x1) = ((1,0,0),(1,1,0),(1,1,0)) x1 + (5,5,0) top_A(x1) = (0,0,0) bot_A() = (1,6,2) 2. lexicographic path order with precedence: precedence: top# > bot > check > old > top > new > ok argument filter: pi(top#) = [] pi(ok) = [] pi(new) = [] pi(check) = [] pi(old) = [] pi(top) = [] pi(bot) = [] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: top#(ok(new(x))) -> top#(check(x)) and R consists of: r1: top(ok(new(x))) -> top(check(x)) r2: top(ok(old(x))) -> top(check(x)) r3: bot() -> new(bot()) r4: check(new(x)) -> new(check(x)) r5: check(old(x)) -> old(check(x)) r6: check(old(x)) -> ok(old(x)) r7: new(ok(x)) -> ok(new(x)) r8: old(ok(x)) -> ok(old(x)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the non-minimal dependency pair problem (P, R), where P consists of p1: top#(ok(new(x))) -> top#(check(x)) and R consists of: r1: top(ok(new(x))) -> top(check(x)) r2: top(ok(old(x))) -> top(check(x)) r3: bot() -> new(bot()) r4: check(new(x)) -> new(check(x)) r5: check(old(x)) -> old(check(x)) r6: check(old(x)) -> ok(old(x)) r7: new(ok(x)) -> ok(new(x)) r8: old(ok(x)) -> ok(old(x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^3 order: lexicographic order interpretations: top#_A(x1) = x1 ok_A(x1) = ((1,0,0),(0,1,0),(1,0,0)) x1 + (0,2,2) new_A(x1) = ((1,0,0),(1,1,0),(1,0,0)) x1 + (0,0,3) check_A(x1) = ((1,0,0),(1,1,0),(0,1,1)) x1 + (0,1,1) top_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 old_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (2,0,4) bot_A() = (0,1,4) 2. lexicographic path order with precedence: precedence: bot > top > check > new > old > ok > top# argument filter: pi(top#) = [] pi(ok) = [] pi(new) = [] pi(check) = [1] pi(top) = [] pi(old) = [] pi(bot) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.