YES
0 RelTRS
↳1 RelTRStoRelADPProof (⇔, 0 ms)
↳2 RelADPP
↳3 RelADPDepGraphProof (⇔, 0 ms)
↳4 AND
↳5 RelADPP
↳6 RelADPCleverAfsProof (⇒, 110 ms)
↳7 QDP
↳8 MRRProof (⇔, 0 ms)
↳9 QDP
↳10 MRRProof (⇔, 0 ms)
↳11 QDP
↳12 QDPOrderProof (⇔, 0 ms)
↳13 QDP
↳14 PisEmptyProof (⇔, 0 ms)
↳15 YES
↳16 RelADPP
↳17 RelADPCleverAfsProof (⇒, 104 ms)
↳18 QDP
↳19 MRRProof (⇔, 56 ms)
↳20 QDP
↳21 MRRProof (⇔, 0 ms)
↳22 QDP
↳23 QDPOrderProof (⇔, 6 ms)
↳24 QDP
↳25 PisEmptyProof (⇔, 0 ms)
↳26 YES
↳27 RelADPP
↳28 RelADPCleverAfsProof (⇒, 96 ms)
↳29 QDP
↳30 MRRProof (⇔, 48 ms)
↳31 QDP
↳32 MRRProof (⇔, 0 ms)
↳33 QDP
↳34 QDPOrderProof (⇔, 11 ms)
↳35 QDP
↳36 PisEmptyProof (⇔, 0 ms)
↳37 YES
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → pred(minus(x, y))
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)
rand(x) → rand(s(x))
rand(x) → x
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → LE(x, y)
pred(s(x)) → x
minus(x, 0) → x
minus(x, s(y)) → PRED(minus(x, y))
minus(x, s(y)) → pred(MINUS(x, y))
mod(0, y) → 0
mod(s(x), 0) → 0
mod(s(x), s(y)) → IF_MOD(le(y, x), s(x), s(y))
mod(s(x), s(y)) → if_mod(LE(y, x), s(x), s(y))
if_mod(true, s(x), s(y)) → MOD(minus(x, y), s(y))
if_mod(true, s(x), s(y)) → mod(MINUS(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)
rand(x) → RAND(s(x))
rand(x) → x
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
3 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 3 subproblems.
minus(x, s(y)) → pred(MINUS(x, y))
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
minus(x, s(y)) → pred(minus(x, y))
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
mod(0, y) → 0
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)
le(0, y) → true
mod(s(x), 0) → 0
minus(x, 0) → x
pred(s(x)) → x
rand(x) → rand(s(x))
rand(x) → x
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
MINUS_2 = 0
mod_2 = 1
if_mod_3 = 0, 2
true =
pred_1 =
le_2 = 0, 1
0 =
minus_2 = 1
rand_1 =
false =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
MINUS(x1, x2) = MINUS(x2)
s(x1) = s(x1)
le(x1, x2) = le
0 = 0
false = false
if_mod(x1, x2, x3) = if_mod(x2)
pred(x1) = x1
mod(x1, x2) = mod(x1)
minus(x1, x2) = minus(x1)
true = true
Recursive path order with status [RPO].
Quasi-Precedence:
[ifmod1, mod1] > 0 > [MINUS1, s1, le, false, minus1] > true
MINUS1: multiset
s1: multiset
le: multiset
0: multiset
false: multiset
ifmod1: multiset
mod1: multiset
minus1: multiset
true: multiset
MINUS(s0(y)) → MINUS(y)
le → le
le → false0
if_mod(s0(x)) → s0(x)
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
mod(00) → 00
if_mod(s0(x)) → mod(minus(x))
le → true0
mod(s0(x)) → 00
minus(x) → x
rand0(x) → x
le → false0
if_mod(s0(x)) → s0(x)
mod(00) → 00
mod(s0(x)) → 00
rand0(x) → x
POL(00) = 0
POL(MINUS(x1)) = x1
POL(false0) = 0
POL(if_mod(x1)) = 2 + 2·x1
POL(le) = 2
POL(minus(x1)) = x1
POL(mod(x1)) = 2 + 2·x1
POL(pred0(x1)) = x1
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
POL(true0) = 2
MINUS(s0(y)) → MINUS(y)
le → le
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
if_mod(s0(x)) → mod(minus(x))
le → true0
minus(x) → x
le → true0
POL(MINUS(x1)) = x1
POL(if_mod(x1)) = 2 + x1
POL(le) = 2
POL(minus(x1)) = x1
POL(mod(x1)) = 2 + x1
POL(pred0(x1)) = x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
POL(true0) = 1
MINUS(s0(y)) → MINUS(y)
le → le
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
if_mod(s0(x)) → mod(minus(x))
minus(x) → x
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS(s0(y)) → MINUS(y)
POL( le ) = 0 |
POL( rand0(x1) ) = 2 |
POL( s0(x1) ) = 2x1 + 2 |
POL( pred0(x1) ) = max{0, x1 - 2} |
POL( mod(x1) ) = max{0, 2x1 - 1} |
POL( if_mod(x1) ) = max{0, 2x1 - 2} |
POL( minus(x1) ) = x1 |
POL( MINUS(x1) ) = x1 |
le → le
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
if_mod(s0(x)) → mod(minus(x))
minus(x) → x
le → le
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
if_mod(s0(x)) → mod(minus(x))
minus(x) → x
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
minus(x, s(y)) → pred(minus(x, y))
le(s(x), 0) → false
mod(0, y) → 0
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
if_mod(false, s(x), s(y)) → s(x)
le(0, y) → true
mod(s(x), 0) → 0
minus(x, 0) → x
le(s(x), s(y)) → LE(x, y)
pred(s(x)) → x
rand(x) → rand(s(x))
rand(x) → x
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
mod_2 = 1
if_mod_3 = 0, 2
true =
LE_2 = 1
le_2 = 0, 1
pred_1 =
0 =
minus_2 = 1
rand_1 =
false =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
LE(x1, x2) = LE(x1)
s(x1) = s(x1)
le(x1, x2) = le
0 = 0
false = false
if_mod(x1, x2, x3) = x2
pred(x1) = x1
mod(x1, x2) = x1
minus(x1, x2) = minus(x1)
true = true
Recursive path order with status [RPO].
Quasi-Precedence:
[s1, le, false, minus1, true] > LE1
[s1, le, false, minus1, true] > 0
LE1: multiset
s1: multiset
le: []
0: multiset
false: multiset
minus1: multiset
true: multiset
LE(s0(x)) → LE(x)
le → le
le → false0
if_mod(s0(x)) → s0(x)
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
mod(00) → 00
if_mod(s0(x)) → mod(minus(x))
le → true0
mod(s0(x)) → 00
minus(x) → x
rand0(x) → x
le → false0
if_mod(s0(x)) → s0(x)
mod(00) → 00
mod(s0(x)) → 00
rand0(x) → x
POL(00) = 0
POL(LE(x1)) = x1
POL(false0) = 0
POL(if_mod(x1)) = 2 + 2·x1
POL(le) = 2
POL(minus(x1)) = x1
POL(mod(x1)) = 2 + 2·x1
POL(pred0(x1)) = x1
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
POL(true0) = 2
LE(s0(x)) → LE(x)
le → le
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
if_mod(s0(x)) → mod(minus(x))
le → true0
minus(x) → x
le → true0
POL(LE(x1)) = x1
POL(if_mod(x1)) = 2 + x1
POL(le) = 2
POL(minus(x1)) = x1
POL(mod(x1)) = 2 + x1
POL(pred0(x1)) = x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
POL(true0) = 1
LE(s0(x)) → LE(x)
le → le
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
if_mod(s0(x)) → mod(minus(x))
minus(x) → x
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
LE(s0(x)) → LE(x)
[s01, minus1]
s01: multiset
le: multiset
rand0: []
minus1: multiset
le → le
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
if_mod(s0(x)) → mod(minus(x))
minus(x) → x
le → le
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
if_mod(s0(x)) → mod(minus(x))
minus(x) → x
le(s(x), s(y)) → le(x, y)
le(s(x), 0) → false
if_mod(false, s(x), s(y)) → s(x)
mod(s(x), s(y)) → IF_MOD(le(y, x), s(x), s(y))
pred(s(x)) → x
mod(s(x), s(y)) → if_mod(le(y, x), s(x), s(y))
minus(x, s(y)) → pred(minus(x, y))
if_mod(true, s(x), s(y)) → MOD(minus(x, y), s(y))
mod(0, y) → 0
if_mod(true, s(x), s(y)) → mod(minus(x, y), s(y))
le(0, y) → true
mod(s(x), 0) → 0
minus(x, 0) → x
rand(x) → rand(s(x))
rand(x) → x
Furthermore, We use an argument filter [LPAR04].
Filtering:if_mod_3 = 0, 2
true =
pred_1 =
IF_MOD_3 = 2
rand_1 =
false =
s_1 =
mod_2 = 1
le_2 = 0, 1
0 =
minus_2 = 1
MOD_2 = 1
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
MOD(x1, x2) = MOD(x1)
s(x1) = s(x1)
IF_MOD(x1, x2, x3) = IF_MOD(x1, x2)
le(x1, x2) = le
true = true
minus(x1, x2) = x1
0 = 0
false = false
if_mod(x1, x2, x3) = if_mod(x2)
pred(x1) = x1
mod(x1, x2) = mod(x1)
Recursive path order with status [RPO].
Quasi-Precedence:
[MOD1, s1] > IFMOD2 > [le, true, false]
[MOD1, s1] > 0 > [le, true, false]
[MOD1, s1] > mod1 > ifmod1 > [le, true, false]
MOD1: multiset
s1: multiset
IFMOD2: multiset
le: multiset
true: multiset
0: multiset
false: multiset
ifmod1: multiset
mod1: [1]
MOD(s0(x)) → IF_MOD(le, s0(x))
IF_MOD(true0, s0(x)) → MOD(minus(x))
le → le
le → false0
if_mod(s0(x)) → s0(x)
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
mod(00) → 00
if_mod(s0(x)) → mod(minus(x))
le → true0
mod(s0(x)) → 00
minus(x) → x
rand0(x) → x
rand0(x) → x
POL(00) = 0
POL(IF_MOD(x1, x2)) = x1 + x2
POL(MOD(x1)) = x1
POL(false0) = 0
POL(if_mod(x1)) = 2·x1
POL(le) = 0
POL(minus(x1)) = x1
POL(mod(x1)) = 2·x1
POL(pred0(x1)) = x1
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
POL(true0) = 0
MOD(s0(x)) → IF_MOD(le, s0(x))
IF_MOD(true0, s0(x)) → MOD(minus(x))
le → le
le → false0
if_mod(s0(x)) → s0(x)
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
mod(00) → 00
if_mod(s0(x)) → mod(minus(x))
le → true0
mod(s0(x)) → 00
minus(x) → x
le → false0
if_mod(s0(x)) → s0(x)
mod(00) → 00
mod(s0(x)) → 00
POL(00) = 0
POL(IF_MOD(x1, x2)) = x1 + x2
POL(MOD(x1)) = 2 + x1
POL(false0) = 1
POL(if_mod(x1)) = 2 + 2·x1
POL(le) = 2
POL(minus(x1)) = x1
POL(mod(x1)) = 2 + 2·x1
POL(pred0(x1)) = x1
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
POL(true0) = 2
MOD(s0(x)) → IF_MOD(le, s0(x))
IF_MOD(true0, s0(x)) → MOD(minus(x))
le → le
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
if_mod(s0(x)) → mod(minus(x))
le → true0
minus(x) → x
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MOD(s0(x)) → IF_MOD(le, s0(x))
IF_MOD(true0, s0(x)) → MOD(minus(x))
[MOD1, s01, IFMOD2, mod1, ifmod1] > [le, true0]
rand0 > [le, true0]
MOD1: [1]
s01: [1]
IFMOD2: [1,2]
le: multiset
true0: multiset
rand0: []
mod1: multiset
ifmod1: multiset
le → le
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
if_mod(s0(x)) → mod(minus(x))
le → true0
minus(x) → x
le → le
rand0(x) → rand0(s0(x))
pred0(s0(x)) → x
mod(s0(x)) → if_mod(s0(x))
minus(x) → pred0(minus(x))
if_mod(s0(x)) → mod(minus(x))
le → true0
minus(x) → x