YES
0 RelTRS
↳1 RelTRStoRelADPProof (⇔, 0 ms)
↳2 RelADPP
↳3 RelADPDepGraphProof (⇔, 0 ms)
↳4 AND
↳5 RelADPP
↳6 RelADPCleverAfsProof (⇒, 38 ms)
↳7 QDP
↳8 MRRProof (⇔, 0 ms)
↳9 QDP
↳10 MRRProof (⇔, 0 ms)
↳11 QDP
↳12 QDPOrderProof (⇔, 0 ms)
↳13 QDP
↳14 PisEmptyProof (⇔, 0 ms)
↳15 YES
↳16 RelADPP
↳17 RelADPCleverAfsProof (⇒, 58 ms)
↳18 QDP
↳19 MRRProof (⇔, 0 ms)
↳20 QDP
↳21 QDPOrderProof (⇔, 0 ms)
↳22 QDP
↳23 PisEmptyProof (⇔, 0 ms)
↳24 YES
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
rand(x) → rand(s(x))
rand(x) → x
We upgrade the RelTRS problem to an equivalent Relative ADP Problem [IJCAR24].
minus(x, 0) → x
minus(s(x), s(y)) → MINUS(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(QUOT(minus(x, y), s(y)))
quot(s(x), s(y)) → s(quot(MINUS(x, y), s(y)))
rand(x) → RAND(s(x))
rand(x) → x
We use the relative dependency graph processor [IJCAR24].
The approximation of the Relative Dependency Graph contains:
2 SCCs with nodes from P_abs,
0 Lassos,
Result: This relative DT problem is equivalent to 2 subproblems.
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(x, 0) → x
minus(s(x), s(y)) → MINUS(x, y)
quot(0, s(y)) → 0
rand(x) → rand(s(x))
rand(x) → x
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
MINUS_2 =
0 =
minus_2 = 1
rand_1 =
quot_2 =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
MINUS(x1, x2) = MINUS(x1, x2)
s(x1) = s(x1)
quot(x1, x2) = quot(x1, x2)
minus(x1, x2) = minus(x1)
0 = 0
Recursive path order with status [RPO].
Quasi-Precedence:
MINUS2 > minus1
[quot2, 0] > s1 > minus1
MINUS2: [2,1]
s1: [1]
quot2: [1,2]
minus1: multiset
0: multiset
MINUS0(s0(x), s0(y)) → MINUS0(x, y)
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
minus(s0(x)) → minus(x)
minus(x) → x
rand0(x) → rand0(s0(x))
rand0(x) → x
quot0(00, s0(y)) → 00
rand0(x) → x
POL(00) = 0
POL(MINUS0(x1, x2)) = x1 + x2
POL(minus(x1)) = x1
POL(quot0(x1, x2)) = x1 + x2
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
MINUS0(s0(x), s0(y)) → MINUS0(x, y)
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
minus(s0(x)) → minus(x)
minus(x) → x
rand0(x) → rand0(s0(x))
quot0(00, s0(y)) → 00
quot0(00, s0(y)) → 00
POL(00) = 1
POL(MINUS0(x1, x2)) = x1 + x2
POL(minus(x1)) = x1
POL(quot0(x1, x2)) = 2·x1 + 2·x2
POL(rand0(x1)) = x1
POL(s0(x1)) = x1
MINUS0(s0(x), s0(y)) → MINUS0(x, y)
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
minus(s0(x)) → minus(x)
minus(x) → x
rand0(x) → rand0(s0(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MINUS0(s0(x), s0(y)) → MINUS0(x, y)
MINUS01 > s01
quot02 > s01
rand0 > s01
MINUS01: multiset
s01: [1]
quot02: [1,2]
rand0: []
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
minus(s0(x)) → minus(x)
minus(x) → x
rand0(x) → rand0(s0(x))
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
minus(s0(x)) → minus(x)
minus(x) → x
rand0(x) → rand0(s0(x))
quot(s(x), s(y)) → s(QUOT(minus(x, y), s(y)))
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
quot(0, s(y)) → 0
rand(x) → rand(s(x))
rand(x) → x
Furthermore, We use an argument filter [LPAR04].
Filtering:s_1 =
QUOT_2 =
0 =
minus_2 = 1
rand_1 =
quot_2 =
Found this filtering by looking at the following order that orders at least one DP strictly:Combined order from the following AFS and order.
QUOT(x1, x2) = QUOT(x1, x2)
s(x1) = s(x1)
minus(x1, x2) = x1
quot(x1, x2) = quot(x1, x2)
0 = 0
Recursive path order with status [RPO].
Quasi-Precedence:
QUOT2 > s1
[quot2, 0] > s1
QUOT2: multiset
s1: multiset
quot2: [2,1]
0: multiset
QUOT0(s0(x), s0(y)) → QUOT0(minus(x), s0(y))
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
minus(s0(x)) → minus(x)
minus(x) → x
rand0(x) → rand0(s0(x))
rand0(x) → x
quot0(00, s0(y)) → 00
rand0(x) → x
quot0(00, s0(y)) → 00
POL(00) = 0
POL(QUOT0(x1, x2)) = x1 + x2
POL(minus(x1)) = x1
POL(quot0(x1, x2)) = 1 + x1 + x2
POL(rand0(x1)) = 2 + x1
POL(s0(x1)) = x1
QUOT0(s0(x), s0(y)) → QUOT0(minus(x), s0(y))
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
minus(s0(x)) → minus(x)
minus(x) → x
rand0(x) → rand0(s0(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT0(s0(x), s0(y)) → QUOT0(minus(x), s0(y))
POL( quot0(x1, x2) ) = 2x1 |
POL( s0(x1) ) = 2x1 + 1 |
POL( minus(x1) ) = x1 |
POL( rand0(x1) ) = max{0, -2} |
POL( QUOT0(x1, x2) ) = 2x1 + 2x2 + 2 |
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
minus(s0(x)) → minus(x)
minus(x) → x
rand0(x) → rand0(s0(x))
quot0(s0(x), s0(y)) → s0(quot0(minus(x), s0(y)))
minus(s0(x)) → minus(x)
minus(x) → x
rand0(x) → rand0(s0(x))