YES
Confluence Proof
Confluence Proof
by csi
Input
The rewrite relation of the following TRS is considered.
W(W(x)) |
→ |
W(x) |
B(I(x)) |
→ |
W(x) |
W(B(x)) |
→ |
B(x) |
F(H(x),y) |
→ |
F(H(x),G(y)) |
F(x,I(y)) |
→ |
F(G(x),I(y)) |
G(x) |
→ |
x |
Proof
1 Decreasing Diagrams
1.1 Relative Termination Proof
The duplicating rules (R) terminate relative to the other rules (S).
1.1.1 R is empty
There are no rules in the TRS R. Hence, R/S is relative terminating.
1.2 Rule Labeling
Confluence is proven, because all critical peaks can be joined decreasingly
using the following rule labeling function (rules that are not shown have label 0).
-
W(W(x))→W(x) ↦ 0
-
B(I(x))→W(x) ↦ 0
-
W(B(x))→B(x) ↦ 1
-
F(H(x),y)→F(H(x),G(y)) ↦ 0
-
F(x,I(y))→F(G(x),I(y)) ↦ 1
-
G(x)→x ↦ 0
All critical pairs are joinable:
-
W(W(x90))
-
W(W(x91))→W(x91)←B(I(x91))
-
W(B(x92))
-
F(H(x93),G(I(y)))→F(H(x93),I(y))←F(G(H(x93)),I(y))
-
F(G(H(x)),I(x96))→F(H(x),I(x96))←F(H(x),G(I(x96)))
Tool configuration
csi
- version: csi 1.2.5 [hg: unknown]
- strategy:
(if linear then (cr -dup;(( lpo -quasi || (matrix -dim 1 -ib 3 -ob 4 | matrix -dim 2 -ib 2 -ob 2 | matrix -dim 3 -ib 1 -ob 2 | arctic -dim 2 -ib 2 -ob 2) || (if duplicating then fail else (bounds -rt || bounds -rt -qc))[1] || poly -ib 2 -ob 4 -nl2 -heuristic 1 || fail )[5]*);shift -lstar);(rule_labeling | rule_labeling -left)?;decreasing else fail)!