YES
Confluence Proof
Confluence Proof
by csi
Input
The rewrite relation of the following TRS is considered.
a(s(x)) |
→ |
s(a(x)) |
b(a(b(s(x)))) |
→ |
a(b(s(a(x)))) |
b(a(b(b(x)))) |
→ |
c(s(x)) |
c(s(x)) |
→ |
a(b(a(b(x)))) |
a(b(a(a(x)))) |
→ |
b(a(b(a(x)))) |
Proof
1 Locally confluent and terminating
Confluence is proven by showing local confluence and termination.
1.1 Rule Removal
Using the
linear polynomial interpretation over (3 x 3)-matrices with strict dimension 1
over the naturals
[a(x1)] |
= |
· x1 +
|
[c(x1)] |
= |
· x1 +
|
[s(x1)] |
= |
· x1 +
|
[b(x1)] |
= |
· x1 +
|
the
rules
b(a(b(b(x)))) |
→ |
c(s(x)) |
c(s(x)) |
→ |
a(b(a(b(x)))) |
a(b(a(a(x)))) |
→ |
b(a(b(a(x)))) |
remain.
1.1.1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
b(b(a(b(x)))) |
→ |
s(c(x)) |
s(c(x)) |
→ |
b(a(b(a(x)))) |
a(a(b(a(x)))) |
→ |
a(b(a(b(x)))) |
1.1.1.1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
b#(b(a(b(x)))) |
→ |
s#(c(x)) |
s#(c(x)) |
→ |
a#(x) |
s#(c(x)) |
→ |
b#(a(x)) |
s#(c(x)) |
→ |
a#(b(a(x))) |
s#(c(x)) |
→ |
b#(a(b(a(x)))) |
a#(a(b(a(x)))) |
→ |
b#(x) |
a#(a(b(a(x)))) |
→ |
a#(b(x)) |
a#(a(b(a(x)))) |
→ |
b#(a(b(x))) |
a#(a(b(a(x)))) |
→ |
a#(b(a(b(x)))) |
1.1.1.1.1 Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over the naturals
[b#(x1)] |
= |
2 · x1 + 1 |
[a(x1)] |
= |
1 · x1 + 1 |
[c(x1)] |
= |
1 · x1 + 1 |
[s#(x1)] |
= |
2 · x1 + 5 |
[s(x1)] |
= |
1 · x1 + 3 |
[a#(x1)] |
= |
2 · x1 + 0 |
[b(x1)] |
= |
1 · x1 + 1 |
together with the usable
rules
b(b(a(b(x)))) |
→ |
s(c(x)) |
s(c(x)) |
→ |
b(a(b(a(x)))) |
a(a(b(a(x)))) |
→ |
a(b(a(b(x)))) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairs
b#(b(a(b(x)))) |
→ |
s#(c(x)) |
s#(c(x)) |
→ |
b#(a(b(a(x)))) |
a#(a(b(a(x)))) |
→ |
a#(b(a(b(x)))) |
remain.
1.1.1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 2
components.
1.2 Local Confluence Proof
All critical pairs are joinable which can be seen by computing normal forms of all critical pairs.
Tool configuration
csi
- version: csi 1.2.5 [hg: unknown]
- strategy:
(cr -kb;((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))!