YES Confluence Proof

Confluence Proof

by csi

Input

The rewrite relation of the following TRS is considered.

a1 b1
a1 c1
b1 b2
c1 c2
a2 b2
a2 c2
b2 b3
c2 c3
a3 b3
a3 c3
b3 b4
c3 c4
a4 b4
a4 c4
b4 b5
c4 c5
a5 b5
a5 c5
b5 b6
c5 c6
a6 b6
a6 c6
b6 b7
c6 c7
a7 b7
a7 c7
b7 b8
c7 c8
a8 b8
a8 c8
b8 b9
c8 c9
a9 b9
a9 c9
b9 b10
c9 c10
a10 b11
b10 b11
c10 b11

Proof

1 Locally confluent and terminating

Confluence is proven by showing local confluence and termination.

1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b7] = 0
[c2] = 0
[b6] = 0
[a3] = 0
[b1] = 0
[b2] = 0
[c6] = 0
[b8] = 0
[a9] = 0
[c7] = 0
[a6] = 0
[b10] = 0
[c8] = 0
[c10] = 0
[a2] = 0
[c4] = 0
[a1] = 0
[c3] = 0
[a7] = 0
[c9] = 0
[b11] = 0
[a5] = 0
[b5] = 0
[a8] = 0
[b9] = 0
[a4] = 0
[b4] = 0
[c5] = 0
[b3] = 0
[a10] = 1
[c1] = 0
the rules
a1 b1
a1 c1
b1 b2
c1 c2
a2 b2
a2 c2
b2 b3
c2 c3
a3 b3
a3 c3
b3 b4
c3 c4
a4 b4
a4 c4
b4 b5
c4 c5
a5 b5
a5 c5
b5 b6
c5 c6
a6 b6
a6 c6
b6 b7
c6 c7
a7 b7
a7 c7
b7 b8
c7 c8
a8 b8
a8 c8
b8 b9
c8 c9
a9 b9
a9 c9
b9 b10
c9 c10
b10 b11
c10 b11
remain.

1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b7] = 0
[c2] = 0
[b6] = 0
[a3] = 0
[b1] = 0
[b2] = 0
[c6] = 0
[b8] = 0
[a9] = 4
[c7] = 0
[a6] = 0
[b10] = 0
[c8] = 0
[c10] = 0
[a2] = 0
[c4] = 0
[a1] = 0
[c3] = 0
[a7] = 0
[c9] = 0
[b11] = 0
[a5] = 0
[b5] = 0
[a8] = 0
[b9] = 0
[a4] = 0
[b4] = 0
[c5] = 0
[b3] = 0
[c1] = 0
the rules
a1 b1
a1 c1
b1 b2
c1 c2
a2 b2
a2 c2
b2 b3
c2 c3
a3 b3
a3 c3
b3 b4
c3 c4
a4 b4
a4 c4
b4 b5
c4 c5
a5 b5
a5 c5
b5 b6
c5 c6
a6 b6
a6 c6
b6 b7
c6 c7
a7 b7
a7 c7
b7 b8
c7 c8
a8 b8
a8 c8
b8 b9
c8 c9
b9 b10
c9 c10
b10 b11
c10 b11
remain.

1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b7] = 0
[c2] = 0
[b6] = 0
[a3] = 0
[b1] = 0
[b2] = 0
[c6] = 0
[b8] = 0
[c7] = 0
[a6] = 0
[b10] = 0
[c8] = 0
[c10] = 0
[a2] = 0
[c4] = 0
[a1] = 0
[c3] = 0
[a7] = 0
[c9] = 0
[b11] = 0
[a5] = 0
[b5] = 0
[a8] = 4
[b9] = 0
[a4] = 0
[b4] = 0
[c5] = 0
[b3] = 0
[c1] = 0
the rules
a1 b1
a1 c1
b1 b2
c1 c2
a2 b2
a2 c2
b2 b3
c2 c3
a3 b3
a3 c3
b3 b4
c3 c4
a4 b4
a4 c4
b4 b5
c4 c5
a5 b5
a5 c5
b5 b6
c5 c6
a6 b6
a6 c6
b6 b7
c6 c7
a7 b7
a7 c7
b7 b8
c7 c8
b8 b9
c8 c9
b9 b10
c9 c10
b10 b11
c10 b11
remain.

1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b7] = 0
[c2] = 0
[b6] = 0
[a3] = 0
[b1] = 0
[b2] = 0
[c6] = 0
[b8] = 0
[c7] = 0
[a6] = 0
[b10] = 0
[c8] = 0
[c10] = 0
[a2] = 0
[c4] = 0
[a1] = 0
[c3] = 0
[a7] = 4
[c9] = 0
[b11] = 0
[a5] = 0
[b5] = 0
[b9] = 0
[a4] = 0
[b4] = 0
[c5] = 0
[b3] = 0
[c1] = 0
the rules
a1 b1
a1 c1
b1 b2
c1 c2
a2 b2
a2 c2
b2 b3
c2 c3
a3 b3
a3 c3
b3 b4
c3 c4
a4 b4
a4 c4
b4 b5
c4 c5
a5 b5
a5 c5
b5 b6
c5 c6
a6 b6
a6 c6
b6 b7
c6 c7
b7 b8
c7 c8
b8 b9
c8 c9
b9 b10
c9 c10
b10 b11
c10 b11
remain.

1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b7] = 0
[c2] = 0
[b6] = 0
[a3] = 0
[b1] = 0
[b2] = 0
[c6] = 0
[b8] = 0
[c7] = 0
[a6] = 4
[b10] = 0
[c8] = 0
[c10] = 0
[a2] = 0
[c4] = 0
[a1] = 0
[c3] = 0
[c9] = 0
[b11] = 0
[a5] = 0
[b5] = 0
[b9] = 0
[a4] = 0
[b4] = 0
[c5] = 0
[b3] = 0
[c1] = 0
the rules
a1 b1
a1 c1
b1 b2
c1 c2
a2 b2
a2 c2
b2 b3
c2 c3
a3 b3
a3 c3
b3 b4
c3 c4
a4 b4
a4 c4
b4 b5
c4 c5
a5 b5
a5 c5
b5 b6
c5 c6
b6 b7
c6 c7
b7 b8
c7 c8
b8 b9
c8 c9
b9 b10
c9 c10
b10 b11
c10 b11
remain.

1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b7] = 0
[c2] = 0
[b6] = 0
[a3] = 0
[b1] = 0
[b2] = 0
[c6] = 0
[b8] = 0
[c7] = 0
[b10] = 0
[c8] = 0
[c10] = 0
[a2] = 0
[c4] = 0
[a1] = 0
[c3] = 0
[c9] = 0
[b11] = 0
[a5] = 1
[b5] = 0
[b9] = 0
[a4] = 0
[b4] = 0
[c5] = 0
[b3] = 0
[c1] = 0
the rules
a1 b1
a1 c1
b1 b2
c1 c2
a2 b2
a2 c2
b2 b3
c2 c3
a3 b3
a3 c3
b3 b4
c3 c4
a4 b4
a4 c4
b4 b5
c4 c5
b5 b6
c5 c6
b6 b7
c6 c7
b7 b8
c7 c8
b8 b9
c8 c9
b9 b10
c9 c10
b10 b11
c10 b11
remain.

1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b7] = 0
[c2] = 0
[b6] = 0
[a3] = 0
[b1] = 0
[b2] = 0
[c6] = 0
[b8] = 0
[c7] = 0
[b10] = 0
[c8] = 0
[c10] = 0
[a2] = 0
[c4] = 0
[a1] = 0
[c3] = 0
[c9] = 0
[b11] = 0
[b5] = 0
[b9] = 0
[a4] = 4
[b4] = 0
[c5] = 0
[b3] = 0
[c1] = 0
the rules
a1 b1
a1 c1
b1 b2
c1 c2
a2 b2
a2 c2
b2 b3
c2 c3
a3 b3
a3 c3
b3 b4
c3 c4
b4 b5
c4 c5
b5 b6
c5 c6
b6 b7
c6 c7
b7 b8
c7 c8
b8 b9
c8 c9
b9 b10
c9 c10
b10 b11
c10 b11
remain.

1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b7] = 0
[c2] = 0
[b6] = 0
[a3] = 4
[b1] = 0
[b2] = 0
[c6] = 0
[b8] = 0
[c7] = 0
[b10] = 0
[c8] = 0
[c10] = 0
[a2] = 0
[c4] = 0
[a1] = 0
[c3] = 0
[c9] = 0
[b11] = 0
[b5] = 0
[b9] = 0
[b4] = 0
[c5] = 0
[b3] = 0
[c1] = 0
the rules
a1 b1
a1 c1
b1 b2
c1 c2
a2 b2
a2 c2
b2 b3
c2 c3
b3 b4
c3 c4
b4 b5
c4 c5
b5 b6
c5 c6
b6 b7
c6 c7
b7 b8
c7 c8
b8 b9
c8 c9
b9 b10
c9 c10
b10 b11
c10 b11
remain.

1.1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b7] = 0
[c2] = 0
[b6] = 0
[b1] = 0
[b2] = 0
[c6] = 0
[b8] = 0
[c7] = 0
[b10] = 0
[c8] = 0
[c10] = 0
[a2] = 1
[c4] = 0
[a1] = 0
[c3] = 0
[c9] = 0
[b11] = 0
[b5] = 0
[b9] = 0
[b4] = 0
[c5] = 0
[b3] = 0
[c1] = 0
the rules
a1 b1
a1 c1
b1 b2
c1 c2
b2 b3
c2 c3
b3 b4
c3 c4
b4 b5
c4 c5
b5 b6
c5 c6
b6 b7
c6 c7
b7 b8
c7 c8
b8 b9
c8 c9
b9 b10
c9 c10
b10 b11
c10 b11
remain.

1.1.1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b7] = 0
[c2] = 4
[b6] = 0
[b1] = 4
[b2] = 4
[c6] = 2
[b8] = 0
[c7] = 1
[b10] = 0
[c8] = 1
[c10] = 0
[c4] = 4
[a1] = 4
[c3] = 4
[c9] = 0
[b11] = 0
[b5] = 1
[b9] = 0
[b4] = 4
[c5] = 2
[b3] = 4
[c1] = 4
the rules
a1 b1
a1 c1
b1 b2
c1 c2
b2 b3
c2 c3
b3 b4
c3 c4
c5 c6
b6 b7
b7 b8
c7 c8
b8 b9
b9 b10
c9 c10
b10 b11
c10 b11
remain.

1.1.1.1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b7] = 0
[c2] = 0
[b6] = 0
[b1] = 0
[b2] = 0
[c6] = 0
[b8] = 0
[c7] = 0
[b10] = 0
[c8] = 0
[c10] = 4
[c4] = 0
[a1] = 0
[c3] = 0
[c9] = 4
[b11] = 0
[b9] = 0
[b4] = 0
[c5] = 0
[b3] = 0
[c1] = 0
the rules
a1 b1
a1 c1
b1 b2
c1 c2
b2 b3
c2 c3
b3 b4
c3 c4
c5 c6
b6 b7
b7 b8
c7 c8
b8 b9
b9 b10
c9 c10
b10 b11
remain.

1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b7] = 0
[c2] = 0
[b6] = 0
[b1] = 0
[b2] = 0
[c6] = 0
[b8] = 0
[c7] = 0
[b10] = 0
[c8] = 0
[c10] = 0
[c4] = 0
[a1] = 0
[c3] = 0
[c9] = 1
[b11] = 0
[b9] = 0
[b4] = 0
[c5] = 0
[b3] = 0
[c1] = 0
the rules
a1 b1
a1 c1
b1 b2
c1 c2
b2 b3
c2 c3
b3 b4
c3 c4
c5 c6
b6 b7
b7 b8
c7 c8
b8 b9
b9 b10
b10 b11
remain.

1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b7] = 0
[c2] = 0
[b6] = 0
[b1] = 0
[b2] = 0
[c6] = 0
[b8] = 0
[c7] = 1
[b10] = 0
[c8] = 0
[c4] = 0
[a1] = 0
[c3] = 0
[b11] = 0
[b9] = 0
[b4] = 0
[c5] = 0
[b3] = 0
[c1] = 0
the rules
a1 b1
a1 c1
b1 b2
c1 c2
b2 b3
c2 c3
b3 b4
c3 c4
c5 c6
b6 b7
b7 b8
b8 b9
b9 b10
b10 b11
remain.

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b7] = 4
[c2] = 0
[b6] = 4
[b1] = 0
[b2] = 0
[c6] = 0
[b8] = 4
[b10] = 0
[c4] = 0
[a1] = 0
[c3] = 0
[b11] = 0
[b9] = 4
[b4] = 0
[c5] = 0
[b3] = 0
[c1] = 0
the rules
a1 b1
a1 c1
b1 b2
c1 c2
b2 b3
c2 c3
b3 b4
c3 c4
c5 c6
b6 b7
b7 b8
b8 b9
b10 b11
remain.

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b7] = 0
[c2] = 0
[b6] = 0
[b1] = 0
[b2] = 0
[c6] = 0
[b8] = 0
[b10] = 1
[c4] = 0
[a1] = 0
[c3] = 0
[b11] = 0
[b9] = 0
[b4] = 0
[c5] = 0
[b3] = 0
[c1] = 0
the rules
a1 b1
a1 c1
b1 b2
c1 c2
b2 b3
c2 c3
b3 b4
c3 c4
c5 c6
b6 b7
b7 b8
b8 b9
remain.

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b7] = 4
[c2] = 0
[b6] = 4
[b1] = 0
[b2] = 0
[c6] = 0
[b8] = 0
[c4] = 0
[a1] = 0
[c3] = 0
[b9] = 0
[b4] = 0
[c5] = 0
[b3] = 0
[c1] = 0
the rules
a1 b1
a1 c1
b1 b2
c1 c2
b2 b3
c2 c3
b3 b4
c3 c4
c5 c6
b6 b7
b8 b9
remain.

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b7] = 0
[c2] = 0
[b6] = 0
[b1] = 0
[b2] = 0
[c6] = 0
[b8] = 1
[c4] = 0
[a1] = 0
[c3] = 0
[b9] = 0
[b4] = 0
[c5] = 0
[b3] = 0
[c1] = 0
the rules
a1 b1
a1 c1
b1 b2
c1 c2
b2 b3
c2 c3
b3 b4
c3 c4
c5 c6
b6 b7
remain.

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b7] = 0
[c2] = 0
[b6] = 1
[b1] = 0
[b2] = 0
[c6] = 0
[c4] = 0
[a1] = 0
[c3] = 0
[b4] = 0
[c5] = 0
[b3] = 0
[c1] = 0
the rules
a1 b1
a1 c1
b1 b2
c1 c2
b2 b3
c2 c3
b3 b4
c3 c4
c5 c6
remain.

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[c2] = 0
[b1] = 0
[b2] = 0
[c6] = 0
[c4] = 0
[a1] = 0
[c3] = 0
[b4] = 0
[c5] = 1
[b3] = 0
[c1] = 0
the rules
a1 b1
a1 c1
b1 b2
c1 c2
b2 b3
c2 c3
b3 b4
c3 c4
remain.

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[c2] = 1
[b1] = 4
[b2] = 4
[c4] = 0
[a1] = 4
[c3] = 0
[b4] = 4
[b3] = 4
[c1] = 4
the rules
a1 b1
a1 c1
b1 b2
b2 b3
b3 b4
c3 c4
remain.

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b1] = 0
[b2] = 0
[c4] = 0
[a1] = 0
[c3] = 1
[b4] = 0
[b3] = 0
[c1] = 0
the rules
a1 b1
a1 c1
b1 b2
b2 b3
b3 b4
remain.

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b1] = 4
[b2] = 0
[a1] = 4
[b4] = 0
[b3] = 0
[c1] = 4
the rules
a1 b1
a1 c1
b2 b3
b3 b4
remain.

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b1] = 0
[b2] = 4
[a1] = 0
[b4] = 0
[b3] = 4
[c1] = 0
the rules
a1 b1
a1 c1
b2 b3
remain.

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b1] = 0
[b2] = 1
[a1] = 0
[b3] = 0
[c1] = 0
the rules
a1 b1
a1 c1
remain.

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b1] = 4
[a1] = 4
[c1] = 0
the rule
a1 b1
remains.

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[b1] = 0
[a1] = 1
all rules could be removed.

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 R is empty

There are no rules in the TRS. Hence, it is terminating.

1.2 Local Confluence Proof

All critical pairs are joinable which can be seen by computing normal forms of all critical pairs.

Tool configuration

csi