YES
Confluence Proof
Confluence Proof
by csi
Input
The rewrite relation of the following TRS is considered.
h(f(f(c)),b) |
→ |
f(h(h(h(c,h(f(h(c,f(b))),a)),b),c)) |
c |
→ |
c |
f(f(h(h(f(a),a),c))) |
→ |
f(h(f(c),b)) |
h(f(h(f(b),h(h(f(h(c,f(c))),b),a))),h(a,c)) |
→ |
c |
Proof
1 Critical Pair Closing System
Confluence is proven using the following terminating critical-pair-closing-system R:
h(f(f(c)),b) |
→ |
f(h(h(h(c,h(f(h(c,f(b))),a)),b),c)) |
f(f(h(h(f(a),a),c))) |
→ |
f(h(f(c),b)) |
h(f(h(f(b),h(h(f(h(c,f(c))),b),a))),h(a,c)) |
→ |
c |
1.1 Rule Removal
Using the
linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1
over the naturals
[a] |
= |
|
[f(x1)] |
= |
· x1 +
|
[h(x1, x2)] |
= |
· x1 + · x2 +
|
[c] |
= |
|
[b] |
= |
|
the
rules
h(f(f(c)),b) |
→ |
f(h(h(h(c,h(f(h(c,f(b))),a)),b),c)) |
h(f(h(f(b),h(h(f(h(c,f(c))),b),a))),h(a,c)) |
→ |
c |
remain.
1.1.1 Rule Removal
Using the
linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1
over the naturals
[a] |
= |
|
[f(x1)] |
= |
· x1 +
|
[h(x1, x2)] |
= |
· x1 + · x2 +
|
[c] |
= |
|
[b] |
= |
|
the
rule
h(f(f(c)),b) |
→ |
f(h(h(h(c,h(f(h(c,f(b))),a)),b),c)) |
remains.
1.1.1.1 Rule Removal
Using the
linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1
over the naturals
[a] |
= |
|
[f(x1)] |
= |
· x1 +
|
[h(x1, x2)] |
= |
· x1 + · x2 +
|
[c] |
= |
|
[b] |
= |
|
all rules could be removed.
1.1.1.1.1 R is empty
There are no rules in the TRS. Hence, it is terminating.
Tool configuration
csi
- version: csi 1.2.5 [hg: unknown]
- strategy:
(cr -cpcs2 -cpcscert; ((( matrix -dim 1 -ib 3 -ob 5 | matrix -dim 2 -ib 2 -ob 3 | matrix -dim 3 -ib 1 -ob 1 | matrix -dim 3 -ib 1 -ob 3 | fail)[2]*);((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])! || (rev;((dp;edg[0.5]?;(sccs | (sc || sct || {ur?;( (matrix -dp -ur -dim 1 -ib 3 -ob 5 | matrix -dp -ur -dim 2 -ib 2 -ob 3 | matrix -dp -ur -dim 3 -ib 1 -ob 1 | matrix -dp -ur -dim 3 -ib 1 -ob 3) || (kbo -ur -af | lpo -ur -af) || ( arctic -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || ( arctic -bz -dp -ur -dim 2 -ib 2 -ob 2[2] | fail) || fail) }restore || fail;(bounds -dp -rfc -qc || bounds -dp -all -rfc -qc || bounds -rfc -qc)[1] || fail ))*[6])! || (( kbo || (lpo | fail;(ref;lpo)) || fail;(bounds -rfc -qc) || fail)*[7])!)))))!